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Abstract

Automation has had a strong presence in manufacturing for centuries, however its

use in society has been very limited. The most ubiquitous robot in everyday life is

the Roomba which has sold over 6 million, but the vacuuming task of this robot is

simple in comparison with the difficult tasks performed in the manufacturing sector.

Automation is successful in manufacturing because the task and environment can

be well-defined to simplify the problem, whereas for automation to penetrate into

society, it needs to safely operate in the presence of significantly greater uncertainty.

Applications that could benefit from increased autonomy include: robot-assisted

surgery, energy efficient control of buildings, autonomous control of vehicles, robotic

assistance for elderly and disabled people, routing aircraft around weather, and home

automation for tasks such as folding laundry, loading and emptying a dish washer, or

tidying up a room.

All of the above applications are examples of stochastic systems which contain

three sources of uncertainty: process uncertainty, sensing uncertainty, and environ-

ment uncertainty. In order to safely operate in the intended domains, the system

must account for all three types of uncertainty in generating a safe control strategy.

This problem of generating control inputs for systems under uncertainty is commonly

referred to as the stochastic control problem. One way of formulating this problem is

as a chance constrained optimization problem that restricts the risk of violating the

system’s constraints to be below a user supplied threshold.

This thesis develops several extensions over existing chance constrained program-

ming solutions. The feedback controller is used to shape the uncertainty of the sys-

tem to facilitate the satisfaction of the stochastic constraints, enabling previously
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infeasible solutions. Systems with component failures are also studied, and the com-

putational complexity is drastically reduced over previous solution methods. The

chance constrained framework is also extended to handle systems operating in uncer-

tain environments. A novel hybrid approach is developed that uses a combination of

sampling and analytic functions to represent the uncertainty. This approach results

in a convex optimization program, guaranteeing the optimal solution and reducing

the complexity over other methods. The formulation is further extended to incorpo-

rate future measurements of the uncertain environment to increase the performance

of the system.

The proposed stochastic control methods are solved in real-time to plan trajecto-

ries for a quadrotor unmanned aerial vehicle navigating in a three-dimensional clut-

tered, uncertain environment. The solution method enables the quadrotor to explore

the environment to gather more information, allowing it to successfully complete its

objective.
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Chapter 1

Introduction

This thesis presents stochastic control methods to enable robust operation of au-

tonomous systems under uncertainty. The primary goal of this thesis is to increase

the applicability of current stochastic control methods to include optimization over the

feedback controller, predictive control of systems with component failures, treatment

of environmental uncertainty, and incorporation of future environmental sensing. In

addition, a thorough comparison of different stochastic constraint handling methods

is presented, providing the criteria to make an informed decision of the methodology

to use for a given application.

1.1 Overview

The primary motivating application for this thesis is stochastic motion planning for

robotic systems. Robotic and autonomous systems are becoming increasingly preva-

lent in everyday life; there are robots which clean floors, teleprescence robots that

can buy and deliver breakfast, personal robots for cleaning a room or emptying a

dishwasher, robotic surgeons, driver assistance systems for pedestrian detection and

lane changing, and even fully autonomous cars. A critical challenge for control and

planning in these systems is the presence of uncertainty. Other planning applications

that share this challenge include air traffic control around weather, chemical process

1



CHAPTER 1. INTRODUCTION 2

control, energy efficient control of buildings and electric cars, and financial engineer-

ing. For all of these examples, there is a pressing need to develop robust and safe

algorithms in the presence of uncertainty.

All of the above applications are examples of stochastic systems, where for the

purposes of this thesis, a stochastic system is defined as a process containing the

following sources of uncertainty:

• process uncertainty

• sensing uncertainty

• environment uncertainty.

Process uncertainty refers to disturbances that cause the system to deviate from the

expected trajectory. Examples of disturbances accounted for by process uncertainty

include wind, varying surface properties over which a vehicle might be traveling, tissue

deformation for needle insertion, discrepancies in building occupancy, or unmodeled

dynamics. Sensing uncertainty refers to the inability to sense the system state exactly,

due to noise in the sensors or the partial observability of the system. This will

act as a disturbance when trying to control the system. Environmental uncertainty

refers to uncertain events in the surrounding environment, outside of the system of

interest. Examples of environmental uncertainty are: natural disasters that cause

drastic changes to the structure of the environment, uncertainty in the behavior of

humans or other autonomous agents, or weather forecast uncertainty for building

control.

The presence of these uncertainties means that the exact system state is never

truly known. There are many different techniques to address this problem. The

simplest approach employs deterministic methods and accounts for the system dis-

turbances by adding buffers to the constraints. However, this approach typically

results in a high risk of failure because the buffer sizes are not determined using the

distribution of the uncertainties. Another approach is to use robust control meth-

ods which account for system uncertainties through worst case bounds on the system

state, formulated based upon bounds on the disturbances. For safety critical systems
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these methods are valuable, but in applications that can tolerate failures the robust

control solutions tend to be conservative. For the applications of concern in this the-

sis, a detailed model of the system’s dynamics is available, allowing the distribution

of the system’s uncertainty to be exploited in the control solution, generally leading

to increased system performance over these other approaches.

For these stochastic control methods, the problem is solved in the space of proba-

bility distributions of the system state, defined as the belief space. However, control

and planning in the belief space does not guarantee success because there might be a

small probability that a large disturbance would occur causing the system to violate

its constraints. Therefore, any stochastic control solution must trade off between the

conservativeness of the plan and the performance of the system.

To use the stochastic control methods developed in this thesis, a description of the

uncertainty of the system is required. Fortunately, for the motivating applications, the

necessary modeling has often already been performed, and in many of these cases the

systems are described well by a linear Gaussian process (one such system is used in the

experimental demonstration in Chapter 9). In cases where linear Gaussian models are

inaccurate, the distribution of the system can be represented using sampling methods

as used in Chapter 6. If only an approximate description of the uncertainty can be

obtained, the methods in this thesis are still applicable and will provide a valuable

heuristic method but there is no formal guarantee that the constraints will be satisfied.

1.2 Motivating Applications

The extensions of the stochastic control framework developed in this thesis are pri-

marily motivated by the growing need for robust operation of autonomous systems

under uncertainty. This section describes several specific examples of autonomous

systems that would benefit from using this stochastic control framework. These ex-

ample applications include robot-assisted surgery, energy efficient control of buildings,

vehicle control, and robotics.
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1.2.1 Robot-Assisted Surgery

Robot-assisted surgery involves using robotic manipulators during surgery. This tech-

nology has the potential to increase the effectiveness of surgical procedures. Specifi-

cally, robot-assisted surgery can improve minimally invasive surgery, decrease incision

sizes which reduces patient recovery times, and improve the surgeon’s control of sur-

gical instruments [1].

One task that is well suited for robotic surgery is needle insertion through soft

tissue. Needle insertion is used in numerous medical procedures including biopsy

to obtain a specific tissue sample for testing, drug injections for anesthesia, and

radioactive seed implantation for brachytherapy cancer treatment [2]. Recent results

suggest that steerable needles will enhance targeting accuracy while avoiding critical

areas in the human body [3].

A steerable needle has a bevel tip resulting in asymmetric forces when traveling

through the tissue. These asymmetric forces can be leveraged to help guide the

needle to the desired location. The steerable needle can be controlled by applying

a constant rotation or a constant linear velocity. However, the motion of the needle

through the tissue causes deformations resulting in large disturbances to the motion

of the needle. These disturbances can cause the needle to enter into critical regions

and cause damage to organs.

To increase the performance of the steerable needles, it has been proposed to

automate the process [4], and this automation fits naturally in the proposed stochastic

control framework. By employing this framework, the disturbances on the motion of

the needle can be directly accounted for. This reduces the risk of damaging organs

or bones and increases the accuracy of the procedure.

1.2.2 Energy Efficient Control of Buildings

Consumption of energy and other natural resources is increasing at an alarming rate

which must be reduced to create a sustainable future [5]. One sector where a large

savings of energy can be realized is the buildings sector, accounting for 40% of the

energy consumption and 40% of the greenhouse gas emissions in the United States [6].
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Heating, ventilation, and air conditioning (HVAC) systems account for 33% of the

buildings’ energy usage [7], and typically employ simple on-off controllers. Conse-

quently, the simplest way to reduce the energy consumption of buildings, without

having to modify the existing infrastructure, is to alter this existing control strategy.

The control of a building’s HVAC system presents a significant challenge due to the

uncertainty in the room occupation, process dynamics, and weather (temperature and

solar radiation) which can create large disturbances. The control system is tasked

with keeping the temperature within a specified comfort zone, regardless of these

disturbances. However, the building standards do not require that these temperature

constraints always be satisfied [8].

These soft temperature constraints as well as the types of uncertainties present can

be directly accounted for in the proposed stochastic control framework. By exploiting

a small probability of temperature constraint violation, the energy consumption can

be significantly reduced. Such control methods have been shown by Oldewurtel et

al. [8] to have the potential to drastically reduce the energy consumption in buildings.

1.2.3 Vehicle Control

In the near future, autonomous vehicles will be commonly used in our everyday lives.

Before fully autonomous vehicles are developed, assistance systems used to aid the

driver will grow in complexity. These systems have the potential to increase the safety

of the car system as well as increase the capacity of the roadways while simultaneously

decreasing the environmental impact. However, in order to safely integrate these

systems into mainstream driving, they must account for the underlying uncertainty

in the driving process. This uncertainty stems from sensing errors, motion noise due

to varying road properties, component failures, and the unknown intent of the other

drivers (or autonomous systems). The presence of these uncertainties introduces some

level of risk for drivers.

One example that illustrates the risk that drivers assume is when passing a tractor

trailer. On all sides of the tractor trailer there are large blind spots that prevent the

driver from seeing other vehicles. According to the California driver’s handbook, the
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driver should not remain along side of it and should instead pass it as quickly as

possible. This policy minimizes the risk of the tractor trailer colliding with the driver

if the car is in the blindspot of the tractor trailer.

Fully autonomous cars must also assume some risk and generate plans taking

into account the uncertainty in the behavior of other drivers or autonomous vehicles.

This type of planning problem is easily formulated by the proposed stochastic control

framework. Using the probability distributions of the uncertainties in the system, the

framework can safely enable various planning tasks such as passing other vehicles,

changing lanes, and entering intersections.

1.2.4 Robotics

There are many applications for the proposed stochastic control and planning frame-

work in the field of robotics. One potential application is simultaneous localization

and mapping (SLAM) which is a fundamental task in robotics [9]. SLAM is con-

cerned with constructing a globally consistent model of the environment and consists

of a vehicle navigating through and sensing an unknown environment. Typical ap-

proaches are only concerned with the estimation process and the robot is manually

guided through the unknown environment. These approaches, however, neglect how

the control inputs and/or path for the robot affects the quality of the map, even

though it can have a dramatic effect.

Another application that has garnered attention from the robotics community

is in home automation for tasks such as: folding laundry, loading and emptying a

dishwasher, or tidying up a room. In all of these examples, robot manipulation

plays a key role in the successful completion of the tasks. However, there can be

a large amount of uncertainty in how the manipulator interacts with objects in the

environment. For instance, in trying to pick up an object, the friction properties, the

rigidity of the object, the weight distribution, and the estimate of the location will

all affect the outcome.

The other application is in robot assisted herding [10], which is concerned with

corralling a group of animals. The difficulty in this scenario is incorporating the
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stochastic nature of the animals as well as with the human/computer coordination.

For all of the above example applications, the proposed framework will allow the

system to safely operate in the presence of uncertainty and to probe the surroundings

to gather information to help successfully complete the task.

1.3 Stochastic Optimization

This thesis considers solutions to the stochastic optimization program presented in

this section. First, consider the following standard optimization program

minimize φ(x, ξ)

subject to

ψ (x, ξ) ≤ 0

(1.1)

where ξ ∈ Rk is a parameter vector and x ∈ Rn is a vector of variables. If φ and

ψ are convex functions, then the optimization program (1.1) is convex and can be

solved efficiently [11]. In many practical applications, however, the parameter vector

ξ may be uncertain causing the previous optimization program to be ill-defined. One

way of handling the uncertainty is to explicitly treat the constraints probabilistically,

leading to the following stochastic optimization program.

minimize E [φ(x, ξ)]

subject to

P (ψ (x, ξ) ≤ 0) ≥ 1− δ
(1.2)

In this formulation, the probability of constraint satisfaction is restricted to be larger

than 1− δ (where 0 ≥ δ < 1). This probabilistic constraint is referred to as a chance

constraint. Depending on whether ψ is scalar-valued or vector-valued, the constraint

is referred to as an individual or joint chance constraint respectively.

The choice of δ for the chance constraint is application specific, and needs to be

determined by the user from the problem specifications. Typically, the applications

considered in this thesis are concerned with values of δ of 0.01, 0.05, or 0.1. If
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δ is smaller, then a very accurate distribution of the tails is required, otherwise the

constraints will not hold during execution. For the simulation examples in this thesis,

a wide range of δ values is used in order to highlight differences between the various

presented methods.

Chance constrained optimization was first introduced by Charnes, Cooper and

Symonds in 1958 [12], Miller and Wagner in 1965 [13], and Prékopa in 1970 [14].

There are two fundamental difficulties in solving the chance constrained optimization

program. Even if the original program (1.1) were convex, there is no guarantee

that the program (1.2) is convex, which could make the optimization difficult. The

second complication is in evaluating the constraint violation probability. Typically,

this requires the calculation of a multivariate integral which generally does not have

a closed form, analytical solution.

Convexity of the Chance Constrained Optimization Program

The optimization program (1.2) was shown to be convex in [15, 16] for an individual,

affine constraint of the form ψ(x, ξ) = ξT

[
x

1

]
if ξ is Gaussian. An extension of this

result was given by Lagoa et al. [17] for the case in which ξ has a log-concave and

symmetric density. Prékopa [18] showed that if ψ(x, ξ) is quasiconvex in (x, ξ) and if ξ

has a log-concave probability distribution, then the resulting program is convex. Two

examples of log-concave probability distributions are the uniform and multivariate

Gaussian distributions. For the case of individual chance constraints of the form

P(ξTq(x) ≤ b) ≥ 1 − δ, Henrion [19] showed that the constraints form a convex set

if q(x) is nonnegative and convex, ξ has an elliptically symmetric distribution, and

δ < 0.5.

Approximation/Bounding Approaches

In the case that the convexity of the optimization program (1.2) cannot be guaranteed,

approximation methods can be employed which bound the probability distribution,

leading to feasible and conservative solutions to the original problem. Ben-Tal and

Nemirovski [20] proposed a quadratic approximation, Rockafellar and Uryasev [21]
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proposed the conditional value-at-risk (CVaR) approximation, and Nemirovski and

Shapiro [22] proposed the Bernstein approximation. The latter two methods replace

the indicator function in the integral for calculating the probability by a convex

bounding function. Hong et al. [23] extended the CVaR approach by solving a series

of convex approximations that iteratively tightens the convex bounding function. This

method was shown to converge to a Karush-Kuhn-Tucker point of the original chance

constrained problem.

The work by van Hessem et al. [24, 25, 26, 27, 28] studied the chance constrained

closed-loop model predictive control problem with Gaussian noise disturbances. They

optimized over the feedback control laws and open-loop inputs while ensuring that

the chance constraints on the overall system were satisfied. To convert the stochastic

problem into a deterministic one, they developed an ellipsoidal set bounding approach

that results in a set of second order cone constraints, however this led to a conservative

solution. This work was extended by Blackmore [29] to handle nonconvex feasible

regions. Shin and Primbs [30] also used the ellipsoidal set bounding approach and

proposed an efficient interior point method that exploited the Riccati structure of the

problem to decrease the computational complexity.

The work by Blackmore et al. [31] uses the work presented in [32] to bound the

joint chance constraints with Gaussian noise using Boole’s inequality, which typically

leads to a very small amount of over-conservativeness. They also used the idea of risk

allocation introduced by [32] to distribute the risk of violating each chance constraint

while still guaranteeing the specified level of safety. By using the risk allocation

technique instead of assuming a constant amount of risk for each constraint, the per-

formance of the overall system can be significantly increased. Ono and Williams [33]

extended this method to multi-agent system, proposing a decentralized algorithm for

solving the chance constrained optimal control problem.

Another approximation used in solving the optimization program (1.2) is the

scenario approach which draws samples for the uncertain parameters and requires

the constraints to be satisfied for each sample. Given the convexity of the original

optimization program (1.1), this method also results in a convex program. In this

approach, the number of samples required needs to be determined in order for the
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original chance constraints to hold with a large probability. This problem was studied

by Calafiore and Campi [34] as well as De Fairas and Van Roy [35]. This method can

result in very conservative solutions or infeasible programs, limiting its applicability.

Luedtke and Ahmed [36] proposed the sampled approximation technique, an extension

to the scenario approach, that allows the choice of which sampled constraints to

satisfy.

Ruszczyński [37] and Blackmore [38] proposed another sampling approach that

draws samples from the uncertainty distributions and uses binary variables to count

the number of constraint violations. This transforms the original stochastic control

problem into a deterministic mixed integer program. This sampling approach, how-

ever, becomes intractable as the number of samples needed to accurately represent the

true belief state increases. Platt and Tedrake [39] extend the sampling and mixed-

integer programming formulation to solve a class of partially observable problems

with state dependent noise.

The optimization problem with uncertain parameters can alternatively be handled

by robust techniques [40], [41], [42], [43], [44]. Rather than using chance constraints,

these methods assume bounds on the unknown parameters which can be used to

formulate worst case bounds on the system state. However, such an approach is

conservative because it disregards the information that is often available about the

distribution of the system’s uncertainty.

Researchers [45], [46], [47] have also developed lower bounds for the stochastic

control problem, which are useful for comparing the performance of the approximation

methods.

Stochastic Motion Planning in Robotics

The application of the stochastic optimization problem in Equation (1.2) has many

motivating applications in robotics, primarily in stochastic motion planning. For de-

terministic motion planning, incremental sampling-based algorithms, such as Proba-

bilistic Roadmaps (PRM) [48] or Rapidly-Exploring Randomized Trees (RRT) [49],

are the most popular algorithms due to their ability to handle large dimensional sys-

tems and low computational complexity. These methods construct graphs of feasible
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paths or trajectories through the environment and search the graph for a solution

to the goal. Recently, Karaman and Frazzoli [50] have proposed RRT* which con-

verges to the optimal solution almost surely. Given the effectiveness of the incremental

sampling-based algorithms for deterministic motion planning, several researchers have

extended them to solve the stochastic motion planning problem.

Prentice and Roy [51] proposed an extension called the Belief Roadmap (BRM)

to efficiently plan in the belief space. For a linear Gaussian system, they devised a

factorization of the covariance matrix from a Kalman filter estimator which allows

several prediction and measurement steps to be combined into a single linear transfer

function. Using this transfer function, they can efficiently search through a graph

of the environment for the minimum covariance path to reach the goal. However,

they do not solve for the control inputs for the system to follow the path. A Markov

Decision Process (MDP) based algorithm was proposed by Alterovitz et al. [52] that

accounts for the motion uncertainty of the system but does not account for the partial

observability of the system state or the sensing uncertainty.

Others [53], [54], [55] [56] have included both the motion and sensing uncertainty

when planning trajectories through the environment, but they simplify the problem

by assuming the maximum likelihood observation is received for all future time-steps.

This approximation results in an inaccurate representation of the probability distri-

bution of the state which can lead to a violation of the constraints on the system.

To better represent the system state’s distribution, Bry and Roy [57] calculated the

distribution of the closed-loop state based upon the distribution of the observations.

They used this distribution along with an extension of the RRT* algorithm to check

for constraint violations.

Van den Berg et al. [58] characterized the probability distribution of a system

based upon a linear quadratic regulator controller with Gaussian models of the pro-

cess and measurement noises. They proposed a two step planning process named

LQG-MP: (1) a set of candidate paths were generated without accounting for the

system uncertainty, (2) the best path was selected based upon a criterion which

incorporated the uncertainty of the state. Since the uncertainty wasn’t taken into ac-

count in generating the paths, the paths generated were often suboptimal solutions.
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Patil et al. [59] provided an extension of the LQG-MP for motion planning in highly

deformable environments with application to computer-assisted surgery. To improve

the estimated probability distributions, they used a simulator and optimal control to

numerically estimate the time-dependent linear dynamics for the uncertain motion

through the deformable materials.

Incorporating environment uncertainty into the motion planning problem has also

received some attention. Missiuro and Roy [60] handled uncertain environments by

modifying the sampler used in a probabilistic roadmap. However, while the algo-

rithm accounts for the environment uncertainty, motion noise or sensing noise is not

accounted for. Burns and Brock [61] also proposed a sampling-based planner to incor-

porate environment sensing uncertainty into the planning process but do not directly

handle motion noise. Stachniss et al. [62] employed a decision-theoretic framework to

choose between macro actions to reduce the uncertainty of the environment during

exploration.

A general principled way of modeling the problem of stochastic motion planning

through uncertain environments is by using Partially Observable Markov Decision

Processes (POMDPs) [63]. A POMDP models a system’s decision process in which

the system’s dynamics are not necessarily deterministic, but rather the outcome of its

actions could be stochastic, and the system does not know the true underlying state.

Instead, the system must take measurements of the underlying state and maintain a

probability distribution over all possible states. In order to solve a POMDP, a policy

must be calculated for the entire belief space that determines the best action for every

possible future belief state that it may encounter. The main difficulty in solving a

POMDP is its large computational complexity, and in general solving a POMDP

exactly is intractable. The two main causes of the large computational complexity is

the curse of dimensionality and the long planning horizons required to generate useful

plans.

Several researchers have proposed efficient solution techniques for solving POMDPs.

The work of Hsu et al. [64, 65] proposed two ideas to decrease the computational com-

plexity and exploit the efficiency of point-based POMDP solvers. They utilized the

mixed observability of the problem by factoring the state into two subsets of fully and
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partially observable states. For this representation, they only needed to maintain a

belief space over the partially observable subset. They also proposed a milestone

guided sampling algorithm to guide the sampling of the point-based POMDP solvers.

The use of macro-actions has also been used to decrease the computational complexity

for planning and learning algorithms [66, 67, 68, 69]. Instead of using the full action

space, these methods use a sequence of primitive actions called macro-actions; this

restricts the policy space and reduces the action branching factor leading to longer

planning horizons.

1.4 Limitations of Existing Methods

Despite the progress in the field of stochastic control, there are several limitations

which prevent direct application of these methods for the motivating applications of

this thesis. Three of these limitations that are addressed in this thesis are presented

below.

1. Computational efficiency restricts real-time applicability.

Many of the proposed solution methods for the stochastic control problem are

not concerned with computational efficiency. However, this restricts their ap-

plicability for online control, which is required for many of the motivating ap-

plications.

2. Conservative solution for feedback design.

The previously proposed methodology for optimizing over the feedback con-

troller uses a conservative bounding approach and assumes a fixed risk for the

constraints. This causes the method to be overly conservative, resulting in the

elimination of feasible solutions.

3. Current methods do not consider both uncertain constraint parameters and vari-

ables.

Previous methods have not considered the case in which both the constraint

parameters and variables are uncertain. This typically occurs in many of the
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motivating applications for the proposed stochastic control framework. Fur-

thermore, the previous methods cannot incorporate future constraint parame-

ter sensing into the formulation, resulting in inefficient solutions or infeasible

problems.

1.5 Contributions

This research addresses the limitations highlighted in the previous section to enable

the application of stochastic control for the motivating problems. This resulted in

several contributions to the field of stochastic control:

1. A comparison of different methods to handle the chance constraints.

A rigorous evaluation of stochastic constraint handling methods is conducted,

illustrating the trade-offs of each technique and providing clear criteria for mak-

ing an informed decision for a given application.

2. Reduced conservativeness for feedback design.

In order to reduce the conservativeness of feedback design in the stochastic

control problem, a novel method is developed to optimize over both the risk

allocation and the feedback controller. The method is shown to enable previous

infeasible solutions.

3. Improved computational efficiency of stochastic control for systems with compo-

nent failures.

By applying the methods presented in this thesis, the computational efficiency

for this problem is drastically reduced as compared with previous solution

methodologies.

4. Extended the chance constrained framework to handle problems with both un-

certain constraint parameters and variables.

The stochastic control framework is extended to handle uncertainty in both

constraint parameters and variables. A novel hybrid approach is developed to
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solve this extended problem, which uses a combination of sampling and an-

alytic functions to represent the probability distributions of the system and

constraint parameters. This approach results in a convex optimization program

under certain conditions, guaranteeing the optimal solution and reducing the

computational complexity.

5. Extended the chance constrained problem formulation to incorporate new mea-

surements of the uncertain constraint parameters.

A novel hierarchical method is developed to incorporate new measurements of

the constraint parameters. This method splits the stochastic control problem

into two stages: (i) an exploration stage that calculates a high level policy for

incorporating information from potential measurements, (ii) an execution stage

that solves a stochastic control problem to execute the high level policy.

6. First successful, real-time experimental demonstration of chance constrained

control with uncertain constraint parameters and variables.

The proposed stochastic control methods are solved in real-time to plan trajec-

tories for a quadrotor unmanned aerial vehicle navigating in a three-dimensional

cluttered, uncertain environment. The solution method enables the quadrotor

to explore the environment to gather more information, allowing it to success-

fully complete its objective.

1.6 Outline

This thesis proceeds in Chapter 2 with the formal definition of the stochastic control

problem and is formulated as a chance constrained optimization program. Chapter 3

compares several different methods of handling the chance constraints. The remaining

chapters investigate the solution of the chance constrained optimization program for

increasingly difficult scenarios.

Chapter 4 considers the simplest case with deterministic constraint parameters

and a system that has a fixed controller and estimator, and is based upon the pub-

lication [70]. This problem is further extended in Chapter 5 by optimizing over the
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feedback controller in order to shape the system uncertainty to enable previously

infeasible solutions; this chapter is based upon [71]. In Chapter 6, the stochastic con-

trol problem for jump Markov linear systems is investigated. This presents several

difficulties because the uncertainty in the system is non-Gaussian and thus is difficult

to represent analytically. The next two chapters consider the solution of the chance

constrained optimization program with uncertain constraint parameters.

Chapter 7 presents a novel hybrid algorithm to solve the chance constrained op-

timization program with uncertain constraint parameters, which is an extension of

previous work [72]. To incorporate sensing of the uncertain constraint parameters

into the problem solution, Chapter 8 presents a hierarchical algorithm for solving the

dual control problem. Chapter 9 provides an experimental demonstration of the hi-

erarchical algorithm for planning trajectories of a quadrotor unmanned aerial vehicle

navigating in a cluttered three-dimensional environment. Chapters 8 and 9 are based

upon a forthcoming publication [73].

The thesis concludes in Chapter 10 with a discussion of the contributions of this

thesis and directions of future work.



Chapter 2

Stochastic Control Problem

This chapter formulates the stochastic control problem addressed in this thesis. Con-

sider the following discrete-time, finite-time horizon, stochastic system defined by

xk+1 = f(xk, uk, wk), k = 0, . . . , N − 1, (2.1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control input, wk ∈ Rr is the

process noise and N is the time horizon. The initial state, x0, is assumed to be

uncertain with a known probability distribution p(x0). At each time step, a noisy

measurement of the state is taken, defined by

yk = h(xk, vk), k = 0, . . . , N − 1 (2.2)

where yk ∈ Rp and vk ∈ Rs are the measurement output and noise of the sensor

at time k, respectively. The process and measurement noise are assumed to have

known probability distributions p(wk) and p(vk), respectively. These distributions are

assumed to be mutually independent at different time-steps. In addition, the process

noise, measurement noise and initial state are assumed to be mutually independent.

In the following chapters, it is assumed that a linear description of the system can

be obtained. For a nonlinear system, this is achieved by linearizing the system around

a nominal trajectory. For this choice, Eqns. (2.1), (2.2) simplify to the following linear

17
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system

xk+1 = Akxk +Bkuk +Wkwk, k = 0, . . . , N − 1, (2.3)

yk = Ckxk + Vkvk, k = 0, . . . , N − 1. (2.4)

For notational convenience, the system state, measurements, control inputs, pro-

cess noise and measurement noise for all time-steps are concatenated to form:

X =


x0

x1

...

xN

 Y =


y0

y1

...

yN−1

 U =


u0

u1

...

uN−1

 W =


w0

w1

...

wN−1

 V =


v0

v1

...

vN−1

 .
(2.5)

In an abuse of notation, X = f(x0,U,W) and Y = h(X,V) will be used as a compact

representation for the calculation of all states and measurements.

Since the process and measurement noise are random variables, the state trajec-

tory and control inputs are also random variables. Consequently the performance of

the system must be judged based upon the expected value of an objective function

φ : RnN × RmN → R, over X and U:

E [φ(X,U)] , (2.6)

where the expectation is over W and V. The objective function is assumed to be a

convex function of X and U.

There is also a set of constraint functions on the state trajectory and control in-

puts, ψi : RnN × RmN → Rqi , i = 1, . . . , Nc. The constraints functions are assumed

to be convex functions. Unfortunately, due to the stochasticity of the problem, the

system constraints cannot be considered deterministically; the stochasticity may re-

sult in a non-zero chance that the constraints will be violated. Consequently, the

constraints must be considered probabilistically, leading to a notion of risk.

Risk is associated with having to make a decision with only partial information

due to the future uncertainty in the system, but with the knowledge that this might

lead to the violation of some of the constraints in the system. A measure of the risk
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thus must be introduced to determine the overall cost of violating the constraints.

There are several different measures that can be considered. The expected value of

the constraints can be used,

E [ψi (X,U)] ≤ 0, i = 1, . . . , Nc, (2.7)

the worst case of the constraints could be considered (if the process and measurement

noise are bounded)

sup
W,V

ψi (X,U) ≤ 0, i = 1, . . . , Nc, (2.8)

or the constraints could be restricted to only hold up to a certain probability limit

P (ψi (X,U) ≤ 0) ≥ 1− δi, i = 1, . . . , Nc. (2.9)

This last measure is typically called a chance constraint.

There is not one “correct” way to handle the constraints for all varying applica-

tions, however, this thesis will be concerned with the use of the chance constraints.

Note, by choosing the probability limit δi carefully, all previous choices can be gen-

erated. If δi = 0.5 and the constant bi in P (ψi (X,U) ≤ bi) is chosen appropriately

then the expected value of the constraints will hold, or if δi = 0 then the constraints

will almost surely hold even under the worst case noise (assuming the process and

measurements noises are bounded). Also, if δi = 0.5 then the median value of the

constraint will hold.

Finally, the stochastic control problem can be expressed as

minimize E [φ(X,U)]

subject to

X = f(x0,U,W)

Y = h(X,V)

P (ψi (X,U) ≤ 0) ≥ 1− δi, i = 1, . . . , Nc

(2.10)

where the expectation is over the noise sources W and V and the optimization is over

the control policy. In general, this optimization program is nonconvex. In this work,



CHAPTER 2. STOCHASTIC CONTROL PROBLEM 20

only causal output feedback controllers are considered of the form

uk = ϕk (y0, . . . , yk) , k = 0, . . . , N − 1. (2.11)

In general, the stochastic control problem in (2.10) cannot be solved for the op-

timal infinite dimensional control policy, but in the following chapters the control

policy will be assumed to be of a given form to obtain a tractable problem. For ex-

ample, a feedback controller will be assumed to have been designed a priori and the

desired state trajectory will be the optimization variable. Or the control policy will

be assumed to be an affine function of the past measurements where the optimization

variables are the feedback gains and the open-loop inputs.

The main challenges to solving the optimization program (2.10) is in characteriz-

ing the distribution of the system state and control inputs as well as satisfying the

chance constraints on the state and control inputs. The following chapter discusses

several approaches of dealing with the chance constraints to form a convex optimiza-

tion program, and the remaining chapters demonstrate how to formulate solutions to

program (2.10) for specific applications.



Chapter 3

Chance Constrained Programming

The most challenging aspect of solving the optimization program (2.10) is in eval-

uating and satisfying the chance constraints. This chapter discusses two general

approaches to this: (i) analytical methods and (ii) sampling methods. The first

approach exploits properties of the probability distribution of the system state and

control inputs to either convert the chance constraints into a set of deterministic

ones or efficiently evaluate the probability of violation. The second approach uses

sampling to approximate the probability distribution of the system. There are three

different sampling approaches that are commonly employed. The first uses mixed

integer programming to approximate the chance constraints by counting the number

of constraint violations. The second enforces the constraints for all of the samples and

determines the probability that the chance constraints will be satisfied. The third

bounds the chance constraints with a convex function and then uses the samples to

evaluate the convex bound. In Section 3.3, a comparison of the different approaches

is made and the conservatism in each method is illustrated through a simple example.

In the final section, a discussion of constraint modeling is presented.

Typically there are two forms of chance constraints:

1. individual chance constraints that deal with the satisfaction of each constraint

separately, requiring each to be satisfied with probability 1− δi

P (ψi (X,U) ≤ 0) ≥ 1− δi, i = 1, . . . , Nc (3.1)

21
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where each ψi is a scalar function;

2. joint chance constraints that deal with the satisfaction of several constraints

simultaneously, requiring all to be satisfied with probability 1− δi

P (ψij (X,U) ≤ 0, j = 1, . . . , qi) ≥ 1− δi, i = 1, . . . , Nc (3.2)

where each ψi ∈ Rqi is a vector valued function. It is assumed that each element

in ψi has been non-dimensionalized so that the violations are comparable and

that the violation of any of the constraints ψij (X,U) ≤ 0 is equally undesirable.

Both forms of constraints are important, but typically the joint chance constraints

are more applicable to the problems that are considered in the following chapters.

The methods presented for joint chance constraints are also applicable to individual

chance constraints, therefore, this chapter will discuss the evaluation of the joint

chance constraints only.

The following sections assume that the convex constraint functions, ψi, are affine

functions of the state and control inputs,

ψi(X,U) = HT
i X + FT

i U− bi, i = 1, . . . , Nc. (3.3)

where Hi ∈ RnN×qi , Fi ∈ RmN×qi and bi ∈ Rqi . For Chapters 3-6, the parameters H

and b are assumed to be deterministic while in Chapters 7 and 8 they are stochastic.

Using the affine constraint functions, the chance constraints are

P
(
HT
i X + FT

i U− bi ≤ 0
)
≥ 1− δi, i = 1, . . . , Nc. (3.4)

This affine assumption is not restrictive for the problems considered because it still

allows for rate constraints, control input saturation, model validity ranges, and re-

strictions on the system from entering unsafe or undesired regions.

The joint chance constraints are difficult to evaluate because they require calculat-

ing a multivariate integral which in general can only be performed for low dimensions.

Typically, there are two different approaches, analytical and sampling, that are used
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to efficiently evaluate the chance constraints. Both approaches are discussed in the

following sections.

3.1 Analytical Methods for Handling the Chance

Constraints

In the following subsections, the methods assume a specific analytical form for the

disturbance sources and exploit the properties of the probability distribution function

to evaluate the probability of violating the constraints.

3.1.1 Ellipsoidal Relaxation

The method developed in [28, 24, 25, 26, 27] assumes that the first and second mo-

ments of the process and measurement noise sources can be estimated numerically

from previously collected data. Using the estimated first and second moments, this

method approximates the true distribution with a Gaussian distribution. Given this

choice, in order to evaluate the chance constraints one needs to integrate a multivariate

Gaussian density, which typically does not have an analytic solution. Consequently,

an ellipsoidal relaxation method is used to reduce it to a tractable problem. The

approach simultaneously optimizes over the shape as well as the center of an ellipsoid

to guarantee the satisfaction of the chance constraints. This approach is presented

below.

To simplify the following presentation of the ellipsoidal relaxation method, let

z ∈ Rnz and z ∼ N (z̄,Σz). The chance constraint P
(
hT
i z ≤ bi, ∀i

)
≥ 1 − δ is

equivalent to,

α

∫
Pz

exp

(
−1

2
(z − z̄)TΣz(z − z̄)

)
dz ≥ 1− δ, (3.5)

where α =
1√

(2π)ndet (Σz)
and Pz is the feasible region for z. There is no straight-

forward way of handling this integral constraint, therefore the constraint is tightened

as follows. If the constraint

z̄ + Er ⊂ Pz (3.6)
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is ensured to be satisfied for the ellipsoid

Er =
{
ξ : ξTΣ−1

z ξ ≤ r2
}

(3.7)

for an appropriately chosen r, then the original constraint P
(
hT
i z ≤ bi, ∀i

)
≥ 1 − δ

is implied by

α

∫
z̄+Er

exp

(
−1

2
(z − z̄)TΣz(z − z̄)

)
dz ≥ 1− δ. (3.8)

After simplifying Eqn. (3.8) to a one-dimensional integral by using standard tech-

niques [74], r is chosen such that

1

2
nz
2 Γ
(
nz
2

) ∫ r2

0

χnz/2−1exp
(
−χ

2

)
dχ = 1− δ. (3.9)

One important property of the solution for r in the previous equation is that for

a given allowed probability of failure δ, the necessary confidence radius r increases

with the dimension of z. As illustrated below, this will affect the conservatism of the

solution for this approach.

Now the original constraint P
(
hT
i z ≤ bi, ∀i

)
> 1− δ can be replaced by requiring

z̄ + Er ⊂ Pz, which for the definition of the ellipsoid Er is equivalent to requiring

hT
i z̄ + r

√
hT
i Σzhi ≤ bi, ∀i. (3.10)

This simplification guarantees that the joint probability of violating any of the con-

straints, hT
i z ≤ bi, is less than δ. As the dimension of the state z increases, the

back-off parameter r also increases causing the conservatism in the ellipsoidal relax-

ation method to increase.

By using the ellipsoidal relaxation method, the original chance constraint has been

reduced to the second order cone constraint in Eqn. (3.10), simplifying even further to

a linear constraint for a fixed Σz. This has the potential to reduce the computational

complexity of solving the optimization program (2.10). A two dimensional example

that illustrates the technique is defined in Example 1 below.

Example 1. Let w ∈ R2 be normally distributed according to w ∼ N (0, I), x ∈ R2,
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Figure 3.1: An illustration of the ellipsoidal relaxation technique for Example 1. The
original constraints are the red solid lines, and the ellipsoidal relaxation technique
is shown as the black line. The line that is equal to the desired probability of fail-
ure is shown as the blue solid line. The feasible region for the state is below the
corresponding lines.

H =

[
−1 1

1 1

]
, b = [0 2]T, and finally the joint chance constraint to be satisfied is

P
(
HT (x+ w)− b ≤ 0

)
≥ 0.9.

The ellipsoidal relaxation method applied to this example is shown in Figure 3.1.

The original constraint is the red solid line and the ellipsoidal relaxation method

guarantees the satisfaction of the joint chance constraint by restricting the variable’s

feasible region to be below the black dashed line. The blue solid line is the line that

equals the desired probability of failure. As is illustrated, this method tends to be

conservative in predicting the feasible region for the system, and the conservativeness

increases with the size of the state space due to the resulting increase of the back-off

parameter r.
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3.1.2 Boole’s Inequality

Similar to the ellipsoidal relaxation approach, Boole’s method assumes that the pro-

cess and measurement noise sources are, or can be approximated by, Gaussian ran-

dom variables. Let z ∈ Rnz , z ∼ N (z̄,Σz), H ∈ Rnz×q, and b ∈ Rq. In general,

even for Gaussian distributions, the joint chance constraint P
(
HTz ≤ b

)
does not

have a closed-form analytical expression and requires the evaluation of multivariate

integrals.

For Gaussian noise sources, the joint chance constraints can be converted into uni-

variate integrals by using Boole’s inequality to conservatively bound the probability

of violation. Boole’s inequality states that for a countable set of events E1, E2, . . ., the

probability that at least one event happens is no larger than the sum of the individual

probabilities:

P

(⋃
i

Ei

)
≤
∑
i

P (Ei) . (3.11)

The chance constraint

P
(
HTz ≤ b

)
≥ 1− δ (3.12)

is equivalent to

P
(
HTz > b

)
≤ δ. (3.13)

By using Boole’s inequality the probability of the constraints being violated is bounded

above by

P
(
HTz > b

)
=

q∑
i=1

P(hT
i X > bi). (3.14)

Consequently, the multivariate constraints are converted to univariate constraints
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in Eqn. (3.14), which can be computed through

P(hT
i z > bi) = P(yi > bi)

=
1√

2πhT
i Σzhi

∫ ∞
bi

exp

(
−(yi − hT

i z̄)2

2hT
i Σzhi

)
dyi

=
1√
2π

∫ ∞
bi−hT

i
z̄√

hT
i

Σzhi

exp

(
−ξ

2

2

)
dξ

= 1− Φ

(
bi − hT

i z̄√
hT
i Σzhi

)
.

(3.15)

The function Φ(·) is the Gaussian cumulative distribution function which does not

have an analytic solution, but can be efficiently evaluated using a series approximation

or a pre-computed lookup table.

Now that the calculation of a single chance constraint has been developed, the

satisfaction of the joint chance constraint, P
(
HTz > b

)
≤ δ, needs to be addressed.

Previously, two methods have been proposed for this: fixed risk [22] and risk alloca-

tion [32, 31].

The fixed risk method assigns a pre-defined allowed probability of violation for

each univariate constraint P(hT
i z > bi). This pre-defined probability is chosen to

ensure that the total probability of violation is below the threshold δ. Typically

a uniform allocation of δ/q is used. Since the allowed risk for each constraint is

known beforehand, the chance constraints can be simplified by modifying the system’s

feasible region at each time-step. For a uniform allocation of risk, this is achieved by

requiring the following constraints to hold

1− Φ

(
bi − hT

i z̄√
hT
i Σzhi

)
≤ δ

q
, i = 1, . . . , q, (3.16)

which can be simplified further to

hT
i z̄ + Φ−1(1− δ/q)

√
hT
i Σzhi ≤ bi, i = 1, . . . , q. (3.17)
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Assuming a risk allocation a priori introduces conservatism into the problem formu-

lation because the assumed allowed risk either might not be achieved or might be

better allocated to another constraint.

The risk allocation method, in contrast, includes the allowed probability of viola-

tion for each univariate constraint as an optimization variable εi. In order to ensure

that the total probability of violation is below the threshold, the optimization vari-

ables are restricted by requiring
∑
εi ≤ δ. For the application of Boole’s method in

this thesis, this risk allocation method was ultimately chosen as it provides increased

system performance with only a slight increase in computational complexity.

Using this risk allocation technique and the evaluation of the chance constraints

in Eqn. (3.15), if the constraints

1− Φ

(
bi − hT

i z̄√
hT
i Σzhi

)
≤ εi, i = 1, . . . , q,∑q

i=1 εi ≤ δ

(3.18)

are satisfied then the original joint chance constraint will also be satisfied. In [31],

they showed that using this set of constraints makes the optimization program (2.10)

a convex program if δ ≤ 0.5 due to the concavity of the Gaussian cumulative distri-

bution function Φ(x) in the range x ∈ [0,∞).

Conservatism

Using Boole’s inequality to upper bound the probability of constraint violation in-

troduces conservatism into the solution. This section evaluates the impact of the

conservatism on the quality of the solution.

Consider the following example with two random events A and B. The probability

that either event A or B occurs is equal to P(A
⋃
B) = P(A) + P(B) − P(A

⋂
B).

Boole’s inequality upper bounds the probability by P(A
⋃
B) ≤ P(A) + P(B), re-

sulting in a conservatism in this example of P(A
⋂
B) due to double counting the

probability that both events occur, as shown in Figure 3.2.

To further investigate the conservatism of using Boole’s inequality to bound the
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A A
⋂
B B

Figure 3.2: An illustration of the conservatism of Boole’s inequality.

joint chance constraints, consider the following example with a set of random events

E1, . . . , Em. The events are assumed to be independent with a uniform probability of

δ/m for any event occurring. The probability that at least one event occurs is

P(E1

⋃
. . .
⋃
Em) = 1− P(Ē1

⋂
. . .
⋂
Ēm)

= 1− P(Ē1) · · ·P(Ēm)

= 1−
(

1− δ

m

)m
.

(3.19)

Boole’s inequality upper bounds the probability by P(E1

⋃
. . .
⋃
Em) ≤ δ resulting

in the following conservatism

δ −
(

1−
(

1− δ

m

)m)
. (3.20)

For this example, Table 3.1 compares the conservatism in Boole’s inequality for

varying numbers of events and probability of the individual events occurring. For a

fixed δ, as the number of events increases the conservatism is constant, however, as

δ increases the conservatism also increases. For m = 20, the conservatism increases

by over 400 times for δ = 0.001 to δ = 0.5. This occurs due to the increase in

the probability of multiple events happening which accounts for the conservatism in

Boole’s inequality. Fortunately, for the problems that are of interest, the allowed

probability of failure is typically less than 0.1 and therefore the conservatism in using

Boole’s inequality is small.
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m δ Conservatism Percentage

10 0.01 4.5e-05 0.45
20 0.01 4.7e-05 0.47
30 0.01 4.8e-05 0.48
40 0.01 4.9e-05 0.49
50 0.01 4.9e-05 0.49

20 0.001 4.7e-07 0.05
20 0.05 0.0012 2.34
20 0.1 0.0046 4.61
20 0.2 0.018 8.95
20 0.3 0.039 13.05
20 0.4 0.068 16.90
20 0.5 0.1 20.54

Table 3.1: A comparison of the conservatism in using Boole’s inequality to bound
the probability of failure for various number of constraints and allowed probability of
constraint violation.

An illustration of using Boole’s inequality for the joint chance constraint problem

in Example 1 is shown in Figure 3.3. For this example, the risk allocation method

is used. The red solid lines are the original constraint, the black line is Boole’s

approach, and the transformed constraints that result in the allowed probability of

failure is shown as the blue solid line. As expected, for a small allowed probability of

failure, the conservatism in using Boole’s inequality to approximate the constraints

is small. This can be seen as the true constraints and the constraints using Boole’s

inequality lie on top of one another.

3.2 Sampling Methods for Handling Chance Con-

straints

The difficulty in evaluating the chance constraints is in calculating the multivariate

integral of the probability distribution for the constraints. The analytical methods

presented in the last section assume a specific form of the probability distribution to

simplify the evaluation. A different approach is presented in the following section that
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Figure 3.3: An illustration of using Boole’s inequality to bound the joint chance
constraint for Example 1. The original constraints are the red solid lines, the Boole’s
approach is shown as the black line, and the transformed constraints that result in the
desired probability of failure are shown as the blue solid line. The blue and black lines
are on top of each other. The feasible region for the state is below the corresponding
lines.

uses a number of samples to represent the probability distribution which simplifies

the evaluation of the chance constraints.

The following subsections use sampling to handle the chance constraints by using

a finite set of particles to represent the probability distribution of the system; this

converts the stochastic control problem into a deterministic one. Each of the following

methods sample Ns particles at each time-step from the noise sources and initial state

to obtain the sets
{w(1)

0 , . . . , w
(1)
N−1, . . . , w

(Ns)
0 , . . . , w

(Ns)
N−1},

{v(1)
0 , . . . , v

(1)
N−1, . . . , v

(Ns)
0 , . . . , v

(Ns)
N−1},

{x(1)
0 , . . . , x

(Ns)
0 }.

(3.21)

An approximation of the distribution of the system state, measurement output, and

control input can then be calculated using this set of samples:

x
(j)
k+1 = Akx

(j)
k +Bku

(j)
k +Wkw

(j)
k

y
(j)
k = Cky

(j)
k + Vkv

(j)
k

u
(j)
k = ϕk

(
y

(j)
0 , . . . , y

(j)
k

) (3.22)
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for all j = 1, . . . , Ns. Let X(j) be defined as X(j) =
[
x

(j)
0

T
, . . . , x

(j)
N

T
]T

and similarly

U(j) =
[
u

(j)
0

T
, . . . , u

(j)
N−1

T
]T

.

In the following subsections, three different approaches of using sampling to sim-

plify the chance constraints are presented: mixed integer programming approach,

scenario approach, and convex bounding approach.

3.2.1 Mixed Integer Programming

Several researchers [37, 38] proposed the idea of using mixed integer programming to

approximate the chance constraints by counting the number of samples satisfying the

constraint:

P
(
HT
i X + FT

i U− bi ≤ 0
)
≈ 1

Ns

∣∣{HT
i X(j) + FT

i U(j) − bi ≤ 0, j = 1, . . . , Ns

}∣∣
(3.23)

for all i = 1, . . . , Nc. In order to use this approximation to replace the chance

constraints in the optimization program (2.10), a set of NcNs binary variables

{β11, . . . , β1Ns , . . . , βNc1, . . . , βNcNs} are introduced such that βij ∈ {0, 1}. The bi-

nary variables are defined such that βij = 1 implies that the constraint HT
i X(j) +

FT
i U(j) − bi ≤ 0 holds for sample j. Consequently, the sum of the binary variables

can be used to approximate the chance constraints

1

Ns

Ns∑
j=1

βij ≥ 1− δi. (3.24)

In order to use this technique, the restrictions on the binary variables, namely

βij = 1⇒ HT
i X(j) + FT

i U(j) − bi ≤ 0, (3.25)

need to be imposed. One method of achieving this is by using the big-M method [75]

with the binary variables resulting in the constraint

HT
i X(j) + FT

i U(j) − bi ≤M (1− βij) , (3.26)
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where M is a large number such that if βij = 0 then the constraint will be satisfied

for all X(j) and U(j). For completeness, the chance constraint in Eqn. (3.4) is replaced

by the following two constraints

HT
i X(j) + FT

i U(j) − bi ≤M (1− βij) , ∀i, j
1

Ns

Ns∑
j=1

βij ≥ 1− δi, ∀i, j.
(3.27)

There are several important properties of this method. First, neither an under-

nor over-approximation can be guaranteed for the approximation of the chance con-

straints in Eqn. (3.23). Therefore this is only a heuristic method, which must be

certified through cross validation. Second, as the number of samples tends to infin-

ity, the approximation of the chance constraints will converge to the true probability

distribution,

1

Ns

∣∣{HT
i X(j) + FT

i U(j) − bi ≤ 0, j = 1, . . . , Ns

}∣∣
Ns→∞

→ P
(
HT
i X + FT

i U− bi ≤ 0
)
.

(3.28)

While in theory this is an important aspect of this approach, in practice it is diffi-

cult to use a large number of particles due to the computational complexity. Third,

using binary variables to keep track of whether or not the constraints have been vio-

lated drastically increases the computational complexity of solving the optimization

program. Consequently, this approach can typically only use 100s of samples which

might not be enough to sufficiently approximate the true probability distribution of

the chance constraints.

A comparison of this approach for various numbers of samples is shown in Fig-

ure 3.4 for Example 1. The black dashed, green dash-dotted, and orange dotted lines

show constraints with 100, 1000, and 5000 samples, respectively. The area below each

line corresponds to the feasible region for the system that the technique estimates will

satisfy the chance constraints. The blue solid line is the line that equals the desired

probability of failure. As expected, the results vary drastically for the different num-

ber of samples and the best approximation is with the largest number of samples.

As shown, the approximations can either be over- or under-approximations for the
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Figure 3.4: An illustration of the mixed integer programming technique for various
number of samples for Example 1. The original constraints are the red solid lines,
and the mixed integer programming technique is shown as the black dashed line,
green dash-dotted line, and the orange dotted line for 100, 1000, and 5000 number of
samples, respectively. The blue solid line is the line that equals the desired probability
of failure. The feasible region for the state is below the corresponding lines.

original constraint and consequently there is no guarantee the chance constraint will

be satisfied.

3.2.2 Scenario Approach

Another sampling technique, proposed by Calafiore and Campi [34] and De Fairas

and Van Roy [35], is the scenario approach. Instead of using samples to approximate

the probability distribution of the chance constraints, this method uses the samples to

bound the chance constraints in order to guarantee they hold with probability 1−∆.

Specifically, the scenario approach replaces the chance constraints in Eqn. (3.4) with

the deterministic constraints

HT
i X(j) + FT

i U(j) − bi ≤ 0, i = 1, . . . , Nc, j = 1, . . . , Ns. (3.29)

In this approach, the number of samples required needs to be determined in order

to guarantee that if Eqn. (3.29) is satisfied, then the original chance constraints will
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hold with probability 1−∆, or more formally,

P
(
P
(
HT
i X + FT

i U− bi ≤ 0
)
≥ 1− δi

)
≥ 1−∆, i = 1, . . . , Nc. (3.30)

Let δ ∈ (0, 1) be the smallest probability of failure for all the chance constraints

δ = min{δ0, . . . , δNc}, ∆ ∈ (0, 1) be the confidence parameter for the scenario ap-

proach, and n be the number of optimization variables. Calafiore and Campi [34]

showed that if

Ns ≥
⌈

2

δ
ln

1

∆
+ 2n+

2n

δ
ln

2

δ

⌉
(where d·e denotes the smallest integer greater than or equal to the argument) then

with probability 1−∆ the original chance constraints hold

P
(
HT
i X + FT

i U− bi ≤ 0
)
≥ 1− δi, i = 1, . . . , Nc.

Intuitively, as the confidence that the original chance constraints hold increases,

∆→ 0, the number of samples required goes to infinity. Consequently, the exponential

growth of the required number of samples may be prohibitive for some problems.

Figure 3.5 illustrates the growth of the number of required samples for δ = 0.03 and

n = 2.

An important property of the scenario approach is that since the joint chance con-

straints were replaced by a set of convex constraints, the solution to the transformed

optimization program can be efficiently computed through numerical algorithms. This

results in a dramatic speedup over the mixed integer programming method. In addi-

tion, with the mixed integer programming approach, the scenario approach formally

guarantees the satisfaction of the chance constraints with probability 1−∆. However,

this formal guarantee may come at the cost of an overly conservative solution or even

result in infeasibility.

An example of the conservativeness of the solution is shown in Figure 3.6 for the

problem in Example 1. The number of samples required for a ∆ = 0.999 was 1025.

The original constraint is the red solid line and the scenario approach guarantees the

satisfaction of the joint chance constraint with probability 0.999 by restricting the
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Figure 3.5: An illustration of the growth of the number of samples required as a
function of ∆.

variable’s feasible region to be below the black dotted line. The transformed con-

straints that result in the allowed probability of failure are shown as the blue solid

lines. As is depicted in this example, the scenario approach results in a very conser-

vative feasible region. In contrast to the mixed integer programming approach (or

other Monte Carlo methods), the conservativeness (or performance) of the approach

cannot be improved by using more samples. In fact, using more samples will only

increase the conservativeness of the solution.

3.2.3 Convex Bounding Method

Another sampling approach is the convex bounding method developed by [76, 22].

Since the probability distribution of the chance constraints may not be a convex

function, it is difficult to include them in the optimization program. This method

finds a suitable conservative, convex approximation for the probability distribution

of the chance constraints. The resulting problem is a convex program which may

decrease the computational complexity.
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Figure 3.6: An illustration of the scenario approach for Example 1. The original
constraints are the red solid lines, the scenario approach is shown as the black dotted
line for 1025 number of samples, and the transformed constraints that result in the
desired probability of failure are shown as the blue solid line. The feasible region for
the state is below the corresponding lines.

Consider a single generic individual chance constraint of the form

P (ψ (X,U) ≤ 0) ≥ 1− δ, (3.31)

which is equivalent to

P (ψ (X,U) > 0) ≤ δ. (3.32)

The probability distribution in Eqn. (3.32) can be calculated via

P (ψ (X,U) > 0) = E [1 (ψ (X,U))] (3.33)

where 1(·) is the indicator function defined as

1(z) =

{
1, if z > 0

0, otherwise.
(3.34)

The indicator function 1(z) (shown in Figure 3.7) is a nonconvex function, this
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Figure 3.7: The indicator function 1(z).

greatly complicates the evaluation of the chance constraints and solving the opti-

mization problem (2.10). However, by bounding the indicator function by a convex

function the optimization program simplifies to a convex program.

Suppose such a nonnegative, nondecreasing, convex function ψ̃ : R → R can be

found such that for any α, ψ̃(z/α) ≥ 1(z) for all z then

E
[
ψ̃ (ψ (X,U) /α)

]
≥ P (ψ (X,U) > 0) . (3.35)

Consequently, if the following convex constraint is satisfied, then the original chance

constraint in Eqn. (3.32) is guaranteed to hold:

E
[
ψ̃ (ψ (X,U) /α)

]
≤ δ. (3.36)

The constraint in Eqn. (3.36) holds for any α, but different choices of α may lead

to a better approximation of the original chance constraint in Eqn. (3.32). Equa-

tion (3.36) can be rewritten as

E
[
αψ̃ (ψ (X,U) /α)

]
≤ αδ. (3.37)

The lefthand side of Eqn. (3.37) is a perspective function αψ̃ (z/α) that is convex in

z and α for α > 0. As shown in [11], the perspective of a convex function is also

convex, therefore αψ̃ (ψ (X,U) /α) is convex in X, U and α for α > 0. Consequently,

the constraint in Eqn. (3.37) is convex and one can optimize over α to obtain the best
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Figure 3.8: A comparison of several convex bounds that can be used to approxi-
mate the indicator function 1(z). The functions (z + 1)+, exp(z), and (z + 1)2

+ are
represented as the green, purple and orange lines respectively.

approximation, thereby reducing the conservativeness of the method.

inf
α>0

E
[
αψ̃ (ψ (X,U) /α)

]
− αδ ≤ 0 (3.38)

Now that the form of the convex constraint used to bound the original chance

constraint has been formulated, the next step is to determine what form of function

to use for ψ̃. The restrictions on the function, as stated previously, are that it needs to

be a convex function and ψ̃(z) ≥ 1(z) for all z. Several examples of possible functions

are shown in Figure 3.8. The following subsections evaluate the bound in Eqn. (3.38)

for each of these variants of ψ̃(z).



CHAPTER 3. CHANCE CONSTRAINED PROGRAMMING 40

Markov Bound (Conditional Value-at-Risk)

One possible functional form for ψ̃(z) is ψ̃(z) = (z + 1)+ where the subscript +

denotes max{z + 1, 0}. This function results in the Markov bound for any α > 0:

P (ψ (X,U) > 0) = P (ψ (X,U) + α > α)

= P
(
(ψ (X,U) + α)+ > α

)
< E

[∣∣(ψ (X,U) + α)+

∣∣
α

]
= E

[
(ψ (X,U) /α + 1)+

]
.

(3.39)

The convex constraint that bounds the original chance constraint is then:

E
[
α (ψ (X,U) /α + 1)+

]
≤ αδ (3.40)

which can be rewritten as

E
[
(ψ (X,U) + α)+

]
≤ αδ. (3.41)

When this bound is used, it is often referred to as the conditional value-at-risk (CVaR)

bound, first introduced in [76]. To show the equivalence, rewrite Eqn. (3.41) as

E
[
(ψ (X,U) + α)+

]
δ

− α ≤ 0. (3.42)

Since the lefthand side is convex in α, the minimum over α can be constructed

inf
α>0

(
E
[
(ψ (X,U) + α)+

]
δ

− α

)
, (3.43)

which is also convex in X and U. This results in the well known quantity CVaR.
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Chebyshev Bound

Another functional form used for ψ̃(z) is ψ̃(z) = (z + 1)2
+ which yields the Chebyshev

bound,

P (ψ (X,U) > 0) ≤ E
[
(ψ (X,U) /α + 1)2

+

]
. (3.44)

Using this function, the convex constraint that bounds the original chance constraint

is

E
[
α (ψ (X,U) /α + 1)2

+

]
≤ αδ (3.45)

which can also be rewritten as

E
[
(ψ (X,U) + α)2

+ /α
]
≤ αδ. (3.46)

Traditional Chebyshev Bound

If the subscript + is dropped off the previous function, then a more conservative

bound is obtained

E
[
α (ψ (X,U) /α + 1)2] ≤ αδ, (3.47)

and after expanding terms and simplifying it can be rewritten as

2E [ψ (X,U)] +
1

α
E
[
ψ (X,U)2]+ α(1− δ) ≤ 0. (3.48)

Minimizing the previous equation over α gives α =

(
1

1− δ
E
[
ψ (X,U)2])1/2

which

yields the final constraint

E [ψ (X,U)] +
(
(1− δ) E

[
ψ (X,U)2])1/2 ≤ 0. (3.49)

Notably, this final constraint only depends upon the first and second moments of the

function ψ (X,U). This property could be beneficial if the first and second moments

can be easily computed from the probability distributions of the uncertainty in the

system, allowing the constraints to be transformed into deterministic constraints.
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Chernoff Bound

Another function that could be used is ψ̃(z) = exp(z) which leads to the Chernoff

bound. The use of this function was also called the “Bernstein approximation” by

Nemirovski and Shapiro [22]. This leads to the constraint for any α > 0:

P (ψ (X,U) > 0) ≤ E [exp (ψ (X,U) /α)] , (3.50)

with the corresponding convex bound for the original chance constraint given by:

E [α exp (ψ (X,U) /α)] ≤ αδ. (3.51)

A comparison of these different convex bounding techniques is shown in Figure 3.9.

The constraint considered is P(b− x ≤ 0) ≥ 0.9 where b ∼ N (0, 1). The probability

distribution of b is plotted as well as the solutions for x using each of the previous

functions used to bound the indicator function. The vertical lines from left to right are

the exact solution (red), Markov bound (z + 1)+ (green), Chebyshev bound (z + 1)2
+

(orange), Chernoff bound exp(z) (purple), and traditional Chebyshev bound (z+ 1)2

(brown). The feasible region for each solution is to the right of the line. The least

conservative solution uses the Markov bound with function (z + 1)+, followed closely

by the Chebyshev bound with function (z+ 1)2
+. The most conservative solution uses

the traditional Chebyshev bound with function (z + 1)2.

Reducing the Conservatism of the Markov Bound Approach

Hong et al. [23] devised a scheme to reduce the conservatism in the Markov bound

(CVaR) approach by providing a better approximation of the indicator function. This

is illustrated in Figure 3.10. Figure 3.10(a) displays the Markov bound approximation,

ψ̃(z), of the indicator function and a right shifted version of it as ψ̂(z). If the difference

of these two convex functions is used to bound the indicator function, it will result

in a better approximation as shown in Figure 3.10(b).

Using the difference of the functions ψ̃(z) = (z + 1)+ and ψ̂(z) = (z)+ to bound
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Figure 3.9: A comparison of the solutions using the different bounding functions of
the indicator function. The vertical lines from left to right are the exact solution (red),
Markov bound (z+ 1)+ (green), Chebyshev bound (z+ 1)2

+ (orange), Chernoff bound
exp(z) (purple), and traditional Chebyshev bound (z + 1)2 (brown). The feasible
region for each solution is to the right of the line. The black curve is the probability
distribution of the constraint.

the probability of constraint violation yields

P (ψ (X,U) > 0) ≤ E
[
(ψ (X,U) + α)+

]
− E

[
(ψ (X,U))+

]
. (3.52)

The best upper bound of the chance constraints can be obtained by optimizing over

α. If this is used, then it can be shown that it equals the probability of constraint

violation i.e.

inf
α>0

E
[
(ψ (X,U) + α)+

]
−E

[
(ψ (X,U))+

]
= lim

α→0
E
[
(ψ (X,U) + α)+

]
−E

[
(ψ (X,U))+

]
= P (ψ (X,U) > 0) .

(3.53)

Consequently, the following constraint is used to replace the original chance constraint

inf
α>0

E
[
(ψ (X,U) + α)+

]
− αδ − E

[
(ψ (X,U))+

]
≤ 0. (3.54)



CHAPTER 3. CHANCE CONSTRAINED PROGRAMMING 44

z

ψ̃(z)
ψ̂(z)

1(z)
1

z

ψ̃(z)− ψ̂(z)
1

(a) (b)

Figure 3.10: A difference of two convex functions used to approximate the indicator
function 1(z). (a) ψ̃(z) is the function used to bound the indicator function in the
Markov bound method and ψ̂(z) is a right shifted version of the function. (b) The
approximation of the indicator function using the difference of two convex functions
ψ̃(z) and ψ̂(z) results in a tighter bound of the indicator function.

The first two terms in Eqn. (3.54) correspond to the Markov bound (CVaR) con-

straint and therefore the conservatism in the Markov bound approach is equal to

E
[
(ψ (X,U))+

]
. Unfortunately Eqn. (3.54) in general is a nonconvex function, how-

ever, the optimization program can be solved through sequential convex approxima-

tions by using a first order Taylor series approximation of the third term around the

previous solution. It was shown in [23] that this will converge to a Karush-Kuhn-

Tucker point of the original chance constrained problem.

While this approach provides a better solution than the Markov bound approach,

generally it comes at the cost of increased computational complexity because it needs

to solve this sequence of convex approximations.

Handling the Joint Chance Constraints

The convex bounding approaches were introduced above using individual chance con-

straints, but they can also be used with joint chance constraints. The joint chance

constraint can be rewritten as

P (ψj (X,U) ≤ 0, j = 1, . . . , q) = P (max{ψ1 (X,U) , . . . , ψq (X,U)} ≤ 0) . (3.55)
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Let ψ be defined as ψ (X,U) = max{ψ1 (X,U) , . . . , ψq (X,U)}, which can be used in

the previous convex bounding approaches. Since ψj (X,U) , j = 1, . . . , q are convex

functions, ψ (X,U) is a convex function and therefore the convexity of the previous

bounding approaches will be conserved.

Solving the Convex Bounding Method

The difficulty in using the convex bounding approaches is in evaluating the expecta-

tion in Eqn (3.37). Typically, this expectation is not trivial to solve analytically since

it involves multidimensional integrals, however, it can be easily evaluated through

sampling. The main issue when using sampling is the solution obtained may not

satisfy the original chance constraints as observed with the other sampling methods.

However, since the convex bounding approach results in a convex optimization pro-

gram, which typically can be solved efficiently, a large number of samples can be used

to better approximate the probability distributions. Cross-validation can also be used

to estimate the confidence that the original chance constraints are satisfied for the

solution.

A comparison of the Markov and Chebyshev bounding functions, shown as the

blue dashed and orange dash-dotted lines, for the previous joint chance constraint

problem in Example 1 is shown in Figure 3.11. As expected, this method results in

a conservative prediction of the feasible region for the problem, and the result from

the Chebyshev bound is more conservative than the Markov bound.

Interpretation of the Convex Bounding Methods

By using the indicator function in Eqn. (3.33), the original chance constraints equally

weight all violations of the constraints no matter how large. In contrast, the con-

vex bounding methods use functions that approximate the indicator function and

weight larger constraint violations more than smaller ones. This can be visualized in

Figure 3.8.

A good example highlighting the difference between what the original chance

constraints and the convex bounding functions measure is given in [77]. Consider
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Figure 3.11: An illustration of the convex bounding approach for Example 1. The
Markov and Chebyshev functions shown as the blue dashed and orange dash-dotted
lines, respectively. The original constraints are the red solid lines, and the transformed
constraints that result in the desired probability of failure are shown as the blue solid
line. The feasible region for the state is below the corresponding lines.

the following example in portfolio optimization contrasting the differences between a

trader and the owner of the investment company. A trader may prefer high uncon-

trolled risks because the incentive structure rewards large returns. In the worst case,

if the trader does realize a huge loss, the trader may be fired but they may move

to another company. Consequently, the trader may perceive a loss of $100 dollars

to be the same as $100, 000 dollars. In contrast, the company owner would have to

cover the large losses if they are realized. Therefore, the owner of the company would

weight a $100, 000 dollars loss much higher than the $100 dollars loss.

The “correct” choice of whether to weight constraint violations equally or not

comes down to the specific application. In stochastic motion planning for aerial

vehicles through uncertain environments, it doesn’t matter whether it is estimated

the aerial vehicle will crash into a wall by a violation of 1 cm or 1 m because the aerial

vehicle will most likely not be able to recover no matter what the constraint violation

is. In contrast, how much the constraints are violated plays a crucial role in stochastic

motion planning for steerable needles in the human body. In this application, the

constraints are critical regions such as organs that the needle shouldn’t pass through

and the potential for damage increases as the needle penetrates these regions more.
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3.3 Comparison of Analytic and Sampling Meth-

ods

There are many different approaches to handle the joint chance constraints, but there

is no clear-cut correct choice in all situations. Table 3.2 compares the approaches pre-

sented in this chapter in computational complexity, conservativeness of the approach,

and whether it can handle arbitrary distributions. The ellipsoidal relaxation technique

has the smallest computational complexity, but achieves this through increasing the

conservativeness of the solution. By using Boole’s inequality, the conservativeness is

drastically reduced from the ellipsoidal relaxation method while the computational

complexity only increases slightly. Also, the original chance constraints are only guar-

anteed to hold for certain distributions. The mixed integer programming approach

has a very large computational complexity which limits its use for only small sized

problems. Although it can handle arbitrary distributions, the mixed integer pro-

gramming approach approximates the constraints and therefore the original chance

constraints are not guaranteed to hold. The scenario approach results in a convex

optimization program with moderate computational complexity. While it can handle

arbitrary distributions, the method bounds the original chance constraints resulting

in a very conservative solution which in most situations will limit its usefulness. The

final approach is to use the convex bounding approach CVaR in-place of the original

chance constraints. Since CVaR is a bound for the original chance constraint it will

guarantee the feasibility of the original problem. This approach has moderate com-

putational complexity compared to the other approaches, and can handle arbitrary

distributions through sampling but results in a conservative solution.

A comparison of the different approaches is shown in Figure 3.12 for Exam-

ple 1. The methods mixed integer programming (MIP), Boole’s inequality, condi-

tional value-at-risk, ellipsoidal relaxation, and scenario approach are shown as the

purple dotted line, solid black line, orange dotted line, green dash-dotted line, and

brown solid line, respectively. The line corresponding to the allowed probability of

failure is shown as the blue solid line which is below the solid black line for the Boole’s

inequality method. As stated before, the mixed integer programming method is an
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Complexity Conservativeness Arbitrary distributions
Ellipsoidal very low large approx.

Boole’s low small approx.
MIP very large — yes

Scenario medium very large yes
Convex bound medium medium yes

Table 3.2: Comparison of the different approaches of handling the original chance
constraints.

approximation method and consequently violates the desired probability of failure in

some regions while being conservative in others. The other methods ranked in terms

of conservativeness are: Boole’s inequality, CVaR, ellipsoidal relaxation, and scenario

approach. As shown, the scenario approach is very conservative as compared to the

other approaches. Also note that Boole’s inequality and CVaR are able to take into

account the interaction of the two constraints at the cusp, located at x = 1, resulting

in a curved feasible region. The other approaches disregard this interaction resulting

in a ∧-shaped feasible region.

While there might not be a correct choice for the method that is used to handle the

joint chance constraints, two of them are not realistic to use. The MIP approach has a

very large computational cost, resulting in only being usable for small sized problems.

Unfortunately, the problems that are of concern in this thesis are too large to be solved

efficiently with the MIP method. The scenario approach can also be disregarded

due to the very large conservatism introduced into the problem formulation, often

resulting in an infeasible optimization program.

The other three methods (ellipsoidal relaxation method, CVaR method, and

Boole’s method) have their own trade-offs resulting in application dependent choices.

The ellipsoidal relaxation method transforms the stochastic optimization program

into a linear program for fixed controllers which is the least computationally inten-

sive, however, it is the most conservative and is only an approximate solution for

non-Gaussian distributions. Boole’s method provides the least conservative solution

with only a slight increase in computational complexity, but is only an approximate

solution for non-Gaussian distributions. The CVaR method resorts to sampling to
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Figure 3.12: A comparison of the mixed integer programming (MIP), Boole’s inequal-
ity, conditional value-at-risk (CVaR), ellipsoidal relaxation, and scenario approach
methods for handling the joint chance constraints shown as the purple dotted line,
solid black line, orange dotted line, green dash-dotted line, and brown solid line, re-
spectively. The true probability of failure line is shown as the solid blue line which is
directly under the line for Boole’s inequality. The predicted feasible region for each
method is below the corresponding lines. The original constraints are the red solid
lines.

handle arbitrary probability distributions, but has the largest computational complex-

ity. The conservativeness of the CVaR method is between the Boole’s and ellipsoidal

relaxation methods.

3.4 Discussion on Constraint Modeling

The previous sections compared the conservatism of the different approaches for han-

dling the joint chance constraints. In this section, the mathematical properties of two

different risk measures are explored.

In the original problem formulation, a set of constraints were imposed on the

system

ψi (X,U) ≤ 0, i = 1, . . . , Nc. (3.56)
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However, due to the uncertainty in the system the constraints are not guaranteed

to always hold. Therefore some measure of the risk associated with violating the

constraints needs to be used. In risk management, there are many different ways to

measure the risk, but typically there are two that are commonly used: Value-at-Risk

(VaR) and conditional value-at-risk.

Given a random variable z ∈ R and confidence level 1− δ, value-at-risk is defined

as

VaR (z; 1− δ) = inf {γ | P (z ≤ γ) ≥ 1− δ} . (3.57)

The chance constraint P (z ≤ 0) ≥ 1−δ is the same as VaR (z; 1− δ) ≤ 0. Conditional

value-at-risk is defined as

CVaR (z; 1− δ) = inf
β

(
β +

1

1− (1− δ)
E [z − β]+

)
. (3.58)

Let β∗ be defined as β∗ = VaR (z; 1− δ) such that P (z ≥ β∗) = δ, then CVaR can

also be written for continuous distributions as

E [z|z ≥ β∗] = E [β∗ + (z − β∗) |z ≥ β∗]

= β∗ +
E [z − β∗]+
P (z ≥ β∗)

= CVaR (z; 1− δ) .

(3.59)

This expression explains where the name conditional value-at-risk comes from because

it is the expected value conditioned on the value-at-risk.

There has been a large amount of controversy over whether VaR or CVaR is a

better measure of risk [78, 79, 77, 80, 81, 82]. Antzer et al. [78] and Rockafellar [79]

compared the two approaches axiomatically by determining a set of properties that

a good measure of risk should possess. Let ρ be defined as an arbitrary measure of

risk, X be a random variable, ‖X‖2 = (E [X2])
1/2

, and Xk be sequence of random

variables. If ‖Xk −X‖2 → 0 as k →∞ then Xk, k = 1, 2, . . . converges to a random

variable X with respect to this norm. Rockafellar [79] defined a risk measure ρ to be

coherent if the following axioms hold:

1. ρ (C) = C for all constant C;
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2. ρ (λX1 + (1− λ)X2) ≤ λρ (X1) + (1− λ)ρ (X2);

3. ρ (X1) ≤ ρ (X2) if X2 ≤ X1;

4. ρ (X) ≤ 0 when ‖Xk −X‖2 → 0 with ρ
(
Xk
)
≤ 0;

5. ρ (λX) = λρ (X) for λ > 0.

The combination of (2) and (5) leads to the subadditivity property

ρ (X1 +X2) ≤ ρ (X1) + ρ (X2) . (3.60)

Using this definition of coherency it can be shown that VaR is not a coherent

measure of risk for all distributions because it violates the subadditivity property.

The following example illustrates this concept.

Example 2 ([82]). Consider two scalar random variables X1 and X2 that are inde-

pendent and given by the following distribution

Xi = εi + ηi, εi ∼ N (0, 1) , ηi =

{
0 with probability 0.991

−10 with probability 0.009
, ∀i = 1, 2.

In this example VaR (Xi; 0.99) = 3.1 since the probability of η = −10 is less than

0.01, and VaR (X1 +X2; 0.99) = 9.8 because the probability of getting the −10 draw

for either Xi is larger than 0.01. Consequently,

VaR (X1 +X2; 0.99) = 9.8 > VaR (X1; 0.99) + VaR (X2; 0.99) = 6.2.

In financial risk management the subadditivity property plays a key role because

it ensures that the diversification principle of portfolio theory holds. In essence, this

means that a diversified portfolio has a lower risk than a non-diversified portfolio;

if this were not the case, then it would be beneficial for someone to open multiple

accounts to make their investments instead of having one central account.

While VaR is not coherent for general probability distributions, the property does

hold for elliptical distributions, which includes the normal distribution [83]. In [82],
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the authors showed that for fat-tailed distributions VaR is subadditive in the tail

regions.

The previous discussion on constraint modeling is not advocating one approach

over another but rather presenting the material for a complete characterization of the

advantages and disadvantages of the approaches.



Chapter 4

Stochastic Control with

Deterministic Constraint

Parameters

In Chapter 2 the stochastic control problem was formally defined, but in general

it is intractable to solve. Chapter 3 described several different methods of relaxing

the problem to obtain a tractable problem formulation. Of the six different meth-

ods presented, only three approaches (Boole’s method, the CVaR method and the

ellipsoidal relaxation method) are realistic to use in bounding (or approximating) the

original problem. The remainder of this thesis will demonstrate the use of these three

approaches in the proposed framework to solve the following stochastic control prob-

lems: stochastic control with deterministic constraint parameters, stochastic control

with feedback design, predictive control of jump Markov systems, stochastic control

with uncertain constraint parameters, and dual control for uncertain constraint pa-

rameters. The thesis concludes with a real-time experimental demonstration of the

proposed framework applied to stochastic motion planning for a quadrotor vehicle

navigating through an uncertain environment.

This chapter develops the stochastic control framework with deterministic pa-

rameters using a fixed controller and estimator. In this development, the properties

of the closed-loop system are directly incorporated into evaluating the joint chance

53
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constraints. This evaluation is performed using Boole’s method, the CVaR method,

and the ellipsoidal relaxation method. The solutions of each method are compared

through several examples at the end of the chapter. As compared to traditional deter-

ministic methods, the presented framework directly handles the inherit stochasticity

without drastically increasing the computational complexity.

The presented examples include application of the developed framework to the

stochastic motion planning problem through known environments. Traditionally, de-

terministic motion planners are used to solve this problem, however, the system would

almost surely experience some form of disturbances, leading to failures in the system.

Such disturbances may include wind, wheel slippage, or unmodeled dynamics. Also,

the system would not be able to sense its state exactly, which would also introduce

uncertainty into the system. Deterministic planners typically account for the system’s

uncertainty by adding buffers to the constraints, however, these buffers are usually

chosen in an ad-hoc manner and may not provide the level of safety the user desires.

Instead, by using the proposed stochastic control framework, the probability of con-

straint violation over the entire trajectory can be successfully constrained to be less

than a user allowed amount.

4.1 System Description

For the stochastic control problem in this chapter, the initial state, process noise

and measurement noise are assumed to be independent, Gaussian random variables

distributed according to:

x0 ∼ N (x̄0,Σ0), wk ∼ N (0,Σw) ∀k, vk ∼ N (0,Σv) ∀k. (4.1)

Only the system trajectory is constrained probabilistically (rather than state and con-

trol), leading to the joint chance constraint P
(
HTX− b ≤ 0

)
≥ 1−δ (or equivalently

P
(
HTX− b > 0

)
≤ δ). The means of the control inputs are constrained to lie in a

region Ū ∈ FU, where FU is a convex, feasible region for the control inputs. In this

chapter, a Kalman filter [84] is chosen as the estimator and the system is controlled
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via a linear quadratic trajectory tracking controller, as these are the most widely used

estimator and controller pair in industry. The following subsections review the formu-

lation of this particular estimator and controller choice. The presented formulation,

however, is applicable to other estimator and controller choices.

4.1.1 Kalman Filter

For a linear, Gaussian system, the Kalman filter is the minimum mean square error

estimator for the mean and uncertainty of the system state. Let Σ̂k|k−1 be the co-

variance matrix of the optimal estimate of xk given the measurements {y0, . . . , yk−1},
and let Σ̂k|k be the covariance matrix of the optimal estimate of xk given the mea-

surements {y0, . . . , yk}. The Kalman filter operates through the following recursion.

The measurement update is

x̂k|k = x̂k|k−1 + Lk
(
yk − Ckx̂k|k−1

)
(4.2)

Σ̂k|k = (I − LkCk) Σ̂k|k−1 (4.3)

where I ∈ Rn×n is the identity matrix and

Lk = Σ̂k|k−1C
T
k

(
CkΣ̂k|k−1C

T
k + Σv

)−1

, (4.4)

for all k = 0, . . . , N . The process update is

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1, (4.5)

Σ̂k|k−1 = Ak−1Σ̂k−1|k−1A
T
k−1 + Σw, (4.6)

for all k = 1, . . . , N . The Kalman filter recursion starts from x̂0|−1 = x̄0 and Σ̂0|−1 =

Σ0.

One of the key properties of the Kalman filter is that the covariance, Σ̂k|k, can be

pre-computed before any measurements are received which allows it to be utilized in

the stochastic control process.
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4.1.2 Linear Quadratic Trajectory Control

Given perfect state information, the linear quadratic controller minimizes the follow-

ing cost function,

J = minimize
uk, k=0,...,N−1

N∑
τ=0

(
xτ − xdτ

)T
Q
(
xτ − xdτ

)
+

N−1∑
τ=0

uT
τ Ruτ , (4.7)

where xdk is the desired trajectory at time-step k, Q ∈ Rn×n is the state error cost,

and R ∈ Rm×m is the control input cost. It can be shown that the optimal input for

a linear system is an affine function of the current state given by,

u∗k = Kkxk + gk (4.8)

Kk = −
(
R +BT

k Pk+1Bk

)−1
BT
k Pk+1Ak (4.9)

gk = −
(
R +BT

k Pk+1Bk

)−1
BT
k qk+1 (4.10)

where Pk and qk are calculated via,

Pk = Q+ AT
kPk+1Ak − AT

kPk+1Bk

(
R +BT

k Pk+1Bk

)−1
BT
k Pk+1Ak (4.11)

qk = (Ak +BkKk)
T qk+1 −Qxdk (4.12)

starting from PN = Q and qN = −QTxdN .

4.1.3 Linear Quadratic Gaussian

Given that there is process and measurement noise, the exact value of the state

xk is not known preventing direct evaluation of the cost function and controller in

Eqns. (4.7), (4.8). Rather, only the expectation of the cost function in Eqn. (4.7) can

be minimized. Fortunately, the certainty equivalence principle [85] has been used to

show that the optimal controller for a linear, Gaussian system with quadratic cost
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uses the estimate of the state from a Kalman filter in Eqn. (4.8), i.e.,

u∗k = Kkx̂k|k + gk. (4.13)

4.2 A Priori Distribution of the Closed-Loop State

and Control Input

Now that the estimator and controller have been defined, the next step in defining the

stochastic control problem is to formulate the probability distribution of the closed-

loop system state, X, and closed-loop control input, U. These will then be used to

evaluate the joint chance constraints.

Applying linear system theory, the closed-loop uncertainty of the system state can

be characterized a priori before any measurements are received. Given the assump-

tion of the Kalman filter estimator and linear quadratic trajectory tracking controller,

the true system evolves according to,

xk+1 = Akxk +Bk(Kkx̂k|k + gk) +Wkwk, k = 0, . . . , N − 1, (4.14)

and the estimate of the system state evolves according to,

x̂k+1|k+1 = Akx̂k|k +Bk

(
Kkx̂k|k + gk

)
+Lk+1

(
yk+1 − Ck+1x̂k+1|k

)
, k = 0, . . . , N −1.

(4.15)

Substituting in for yk+1 and x̂k+1|k from Eqns. (2.4) and (4.5) into Eqn. (4.15) yields,

x̂k+1|k+1 = Akx̂k|k +Bk

(
Kkx̂k|k + gk

)
+

Lk+1

[
Ck+1

(
Akxk +Bk(Kkx̂k|k + gk) +Wkwk

)
+

Vk+1vk+1 − Ck+1

(
Akx̂k|k +Bk

(
Kkx̂k|k + gk

))]
.

(4.16)

Finally, simplifying and collecting the common terms results in

x̂k+1|k+1 = (Ak +BkKk − Lk+1Ck+1Ak) x̂k|k + Lk+1Ck+1Akxk +Bkgk+

Lk+1Ck+1Wkwk + Lk+1Vk+1vk+1.
(4.17)
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The state estimation error, ek|k = xk − x̂k|k, then evolves according to

ek+1|k+1 = (I − Lk+1Ck+1)Akek|k + (I − Lk+1Ck+1)Wkwk − Lk+1Vk+1vk+1. (4.18)

To determine the distribution of the closed-loop system, xk+1 and ek+1|k+1 from

Eqns. (4.14) and (4.18) are combined into a single system resulting in the following

time-varying system,

zk+1 = Fkzk + B̄gk +Gksk (4.19)

where

zk =

[
xk

ek|k

]
, sk =

[
wk

vk+1

]
B̄ =

[
Bk

0

]
,

Fk =

[
Ak +BkKk −BkKk

0 (I − Lk+1Ck+1)Ak

]
,

Gk =

[
Wk 0

(I − Lk+1Ck+1)Wk −Lk+1Vk+1

] (4.20)

with sk ∼ N (0,Σs), Σs = diag (Σw,Σv) and diag places the matrices along the

diagonal.

The system starts from z0 =
[
xT

0 , xT
0 − x̂T

0|0

]T

. The mean, z̄k, and covariance,

Σ̃k, for the system defined by Eqn. (4.19) can now be determined,

z̄k+1 = Fkz̄k + B̄gk (4.21)

Σ̃k+1 = FkΣ̃kF
T
k +GkΣsG

T
k , (4.22)

starting from z̄0 =

[
x̂0|0

0

]
and Σ̃0 =

[
Σ0 0

0 Σ̂0|0

]
. Finally, the closed-loop state

and control input evolves according to,[
xk

uk

]
=

[
I 0

Kk −Kk

]
︸ ︷︷ ︸

Λk

[
xk

ek|k

]
+

[
0

I

]
gk. (4.23)

Consequently, the a priori closed-loop state and control input at time-step k, for all
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k = 1, . . . , N − 1, is distributed by,[
xk

uk

]
∼ N

([
T xx0
k x̄0 + T xgk g

Kk(T
xx0
k x̄0 + T xgk g) + gk

]
,ΛkΣ̃kΛ

T
k

)
(4.24)

where g =
[
gT

0 . . . gT
N−1

]T

. The k-th row of the matrix T xx0 is,

T xx0
k = (Ak−1 +Bk−1Kk−1)(Ak−2 +Bk−2Kk−2) · · · (A0 +B0K0) (4.25)

and the elements of the lower triangular matrix T xg are,

T xg =



B0 0 . . . 0

(A1 +B1K1)B0 B1 . . . 0

(A2 +B2K2)(A1 +BK1)B0 (A2 +BK2)B1 B2 0
...

(
∏N−1

τ=1 (Aτ +BτKτ ))B0 (
∏N−1

τ=2 (Aτ +BτKτ ))B1 . . . BN−1


.

(4.26)

Let Xd and q be defined as: Xd =
[
xd1

T
. . . xdN

T
]T

and q =
[
qT

1 . . . qT
N

]T

.

The constant input term in the LQG controller is defined as a function of q (recall

from Eqn. (4.10)), i.e., g = Ψ q where Ψ is a block diagonal matrix with entries

Ψii = − (R + BT
i Pi+1Bi)

−1BT
i , for all i = 0, . . . , N − 1. Also, the vector q from

Eqn. (4.12) can be written in terms of the desired trajectory, q = ΘXd where Θ is

defined as ∀i, j ∈ [0, N − 1],

Θij =


0 if j < i

−QT if j = i

−(
∏j

τ=i+1(Aτ +BτKτ )
T)QT otherwise.

(4.27)

Consequently, the mean of the closed-loop state is

X̄ = T xx0x̄0 + T xx
dXd (4.28)
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where T xx
d

= T xgΨΘ. The mean of the control inputs is

Ū = T ux0x̄0 + T ux
dXd (4.29)

with T ux0 = K̃T xx0 +

[
K0

0

]
, T ux

d
=
(
K̃T xx

d
+ ΨΘ

)
, and K̃ is a block matrix

defined as

K̃ =


0 . . . 0

K1
...

0
. . . 0

KN−1

 . (4.30)

4.3 Gradient and Hessian of the Chance Constraints

To aid in the solution of the optimization program (2.10) using Boole’s method,

the gradient, gc, and Hessian, Hc, of the chance constraints can also be computed

analytically. First, the gradient can be computed for one probability constraint and

then generalized for all. Let hi be the i-th column of the constraint matrix H. From

the chain rule,

∇XdP
(
hT
i X > bi

)
=
∂P
(
hT
i X > bi

)
∂X̄

∇XdX̄. (4.31)

From Eqn. (3.15) and the Leibniz integral rule,

∂P
(
hT
i X > bi

)
∂X̄

= −

∂Φ

bi − hT
i X̄√

hT
i Σ̃hi


∂X̄

=
1√

2πhT
i Σ̃hi

exp

(
−(bi − hT

i X̄)2

2hT
i Σ̃hi

)
hT
i .

(4.32)

The gradient of X̄ with respect to Xd is ∇XdX̄ = T xx
d
. Combining the individual

gradients into vector notation yields the total constraint gradient:

gc = T xx
dT
Hl (4.33)
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where l is defined as a vector with elements,

li =
1√

2πhT
i Σ̃hi

exp

(
−(bi − hT

i X̄)2

2hT
i Σ̃hi

)
. (4.34)

The Hessian of the probability constraints is determined through a similar process.

The Hessian of one individual constraint is,

∇2
XdP

(
hT
i X > bi

)
= diT

xxdT
hih

T
i T

xxd (4.35)

where di =
bi − hT

i X̄√
2π(hT

i Σ̃hi)3/2
exp

(
−(bi − hT

i X̄)2

2hT
i Σ̃hi

)
. The Hessian of all the probability

constraints in matrix form is then,

Hc = T xx
dT
Hdiag (d)HTT xx

d

. (4.36)

4.4 Final Optimization Program

The final optimization program for the stochastic control problem is shown below.

minimize
Xd

E [φ(X,U)]

subject to

X̄ = T xx0x̄0 + T xx
dXd

Ū = T ux0x̄0 + T ux
dXd

Ū ∈ FU

joint chance constraints handling

(4.37)

The difference between each of the methods (Boole’s, CVaR, and ellipsoidal relax-

ation) lies in how the joint chance constraints are handled. For Boole’s method the
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following constraints are added

1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
≤ εi, i = 1, . . . , Nc∑Nc

i=1 εi ≤ δ.

(4.38)

For the CVaR method the constraints are

E
[(

max(HTX− b+ α)
)

+

]
≤ αδ, (4.39)

where the expectation is evaluated using sampling. Finally, the constraints for the

ellipsoidal relaxation method are

hT
i X̄ + r

√
hT
i ΣXhi ≤ bi, i = 1, . . . , Nc, (4.40)

where r is defined in Eqn. (3.9). For all of the methods, the resulting optimization

program is convex.

4.5 Simulation Examples

The following section presents several examples comparing the solution to a stochas-

tic control problem using Boole’s method, the CVaR method, and the ellipsoidal

relaxation method.

4.5.1 Open-Loop Unstable Dynamics, Convex Environment

This first example considers the case of an open-loop unstable system which could not

be handled in [31] because they only considered the open-loop system distribution.

By incorporating a feedback controller, the formulation presented in this chapter is

shown to handle such unstable systems as long as a linear quadratic feedback law can

stabilize the system.
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Example 3. Consider an unstable system with dynamics given by,

A =

[
2.72 0

0.17 1

]
, B =

[
0.17

7.2e− 3

]
, C =

[
1 0

0 1

]
,

and a time horizon of N = 20. The noise parameters and the distribution of the

initial state are,

Σw = 0.0001I, Σv = 0.0001I, x0 ∼ N

([
0

0

]
, 0.0001I

)
.

The feasible region for the system state is defined by the following constraints,[
1 0

]
xk ≤ 1.05,

[
0 −1

]
xk ≤ 0.2,

[
−1 1

]
xk ≤ 0.3

for all k = 1, . . . , N . The allowed probability of constraint violation is δ = 0.01. The

objective function for this problem is quadratic in the final state as well as the control

inputs,

φ(X,U) = (xN − xref)
TQobj (xN − xref) + UTRobjU (4.41)

with Qobj = I, Robj = 0.001I and xref =
[

1 1
]T

.

The solutions for this example using Boole’s method, the CVaR method, and

the ellipsoidal relaxation method are shown in Figure 4.1(a)-(c), respectively. The

start and goal location are shown by the blue circle and red ‘x’, the feasible region

is the white area, the mean system trajectory is the blue, thick line, and the ellipses

represent the 99.7% confidence ellipsoids at each time-step. The number of particles

used in the CVaR method is Ns = 1000 and the solution for every particle is shown

as the gray lines in Figure 4.1(b).

Table 4.1 compares the actual probability of constraint violation calculated through

Monte Carlo simulation and the computation time for each of the methods. The op-

timization was performed using Matlab on a 2.7 GHz Intel Core i7 computer; the

computation times are provided only for comparison and they can be drastically re-

duced by using a compiled language such as C++. Note, the computation time for
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the CVaR method is slightly inflated due to the inefficiency of loops in Matlab. As

expected, using Boole’s method results in the least conservative solution and the el-

lipsoidal relaxation method results in the most conservative solution. This can be

seen visually in Figure 4.1 by how far the solution for each method stays away from

the slanted boundary. Specifically, for Boole’s method the uncertainty ellipses touch

the slanted constraint, whereas for the ellipsoidal relaxation method the uncertainty

ellipses are further away.

Table 4.1: A comparison of the calculated probability of constraint violation through
Monte Carlo simulation for the methods. The allowed probability of failure is δ =
0.01.

δsim comp. time (s)
Boole’s method 0.0096 2.42

CVaR method (Ns = 1000) 0.0058 22.72
Ellipsoidal relaxation method 0.00031 0.84

Figure 4.2 displays the constraint violation probability at each time-step using

Boole’s method for the slanted line. At the start of the trajectory, the system has

a very low chance of violating the constraints, but near the end the probability of

violation increases dramatically. This non-uniform distribution of constraint viola-

tion probability is a result of using the risk allocation algorithm, which in this case

has chosen to assign most of the allowable constraint violation near the end of the

trajectory. This can be seen visually by the proximity of the system trajectory to the

constraint in Figure 4.1(a). By using this risk allocation algorithm, the performance

of the system is increased as compared with using a pre-defined risk profile.

A comparison of the probability of constraint violation statistics for the CVaR

method with varying number of particles is shown in Table 4.2. The statistics are

calculated for 100 runs of each algorithm and the probability of constraint violation

is calculated via Monte Carlo simulation for each iteration. As expected, for the

smaller number of particles the actual probability of constraint violation is larger

due to the inability to represent the true probability distribution with smaller sample

sizes. In some cases, the true probability of constraint violation exceeds the allowed

limit. Consequently, the solution using the CVaR method must be checked using
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(a) Boole’s Method (b) CVaR Method
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(c) Ellipsoidal Relaxation Method

Figure 4.1: The solution for the unstable dynamics example for Boole’s method, the
CVaR method and the ellipsoidal relaxation method for Example 3. The blue circle is
the starting position of the state and the red ‘x’ is the goal location. The white area
is the feasible region. The thick blue line in each plot is the solution for the mean
trajectory of the system. (a) The solution using Boole’s method. The ellipses are the
99.7% confidence regions of the state at each time-step. (b) The solution using the
CVaR method with 1000 particles. The trajectories for all the particles are shown as
the gray lines. (c) The solution using the ellipsoidal relaxation method.



CHAPTER 4. DETERMINISTIC CONSTRAINT PARAMETERS 66

0 5 10 15 20
0

2

4

6

8 x 10−4

Time−step

P
ro
ba
bi
lit
y

Figure 4.2: The probability of violating the slanted line constraint for the open-loop
unstable example for Example 3. The horizontal axis is the time-step and the vertical
axis is the probability of violating the constraint.

cross-validation to ensure that the original constraints hold. Also, as the number

of particles increases to better represent the true distribution, the solution becomes

more conservative.

Table 4.2: A comparison of the solution statistics for the CVaR algorithm for various
number of particles.

Ns mean δsim std. dev. δsim max δsim
500 0.0090 0.0037 0.0197
1000 0.0060 0.0022 0.0146
2000 0.0047 0.0015 0.0093

4.5.2 Nonconvex Environments with Integrator Dynamics

In the previous example, the environment was readily describable by a set of convex

constraints. In general, however, the feasible region for stochastic control problems

may be nonconvex regions, significantly increasing the computational complexity of

solving the resulting optimization program. To handle these nonconvex cases, typ-

ically, the optimization program is transformed into a series of convex problems by
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either performing branch and bound on the disjunction of the constraints [86] or de-

composing the feasible region into convex tunnels which are then planned through [87].

The latter approach is used in the following examples.

Example 4. Consider a system with double integrator dynamics and a 2D position,

A =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , B =


0.5∆t2 0

0 0.5∆t2

∆t 0

0 ∆t

 , C =

[
1 0 0 0

0 1 0 0

]
.

(4.42)

where ∆t = 0.1 seconds and a time-horizon of N = 20. The noise parameters are,

Σw = diag(0.0003, 0.0005, 0.0003, 0.0005),

Σv = diag(0.001, 0.002).
(4.43)

The objective function is the same as in Example 3 with xref =
[

2 1 0 0
]T

,

Qobj =

[
10I 0

0 0

]
, and Robj = 0.001I.

Using the tunnel method to deal with the nonconvex environments, the feasible

region can be decomposed into two different tunnels corresponding to going around

the top or bottom of the first obstacle. Figure 4.3 shows the decomposition of the

nonconvex region for the top and bottom paths.
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Figure 4.3: The decomposition of the nonconvex space into tunnels corresponding to
the bottom path and top path in (a) and (b), respectively.

Bottom Region

The probability constraints for the bottom region are,

(A,B)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤


0.15

1.75

0.15

0.15

 k = 1, . . . , k1

(B,C,D)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤

−1.4

1.75

2.75

0.15

 k = k1 + 1, . . . , k2

(D,E)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤

−1.4

1.75

2.75

−0.75

 k = k2 + 1, . . . , N
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where k1 and k2 are the switching times between the three sets of constraints. The

switching times correspond to when the system exits one region, defined by the con-

straints, and enters another. Corresponding to the regions in Figure 4.3(a), the first

inequality constrains the system to be in regions A and B, the second inequality re-

stricts the system to only be in regions B, C and D, and the final constraint allows

the system to be in regions D and E.

Top Region

Similarly, the probability constraints for the top region are,

(F,G)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤


0.15

0.15

2.75

0.15

 k = 1, . . . , k1

(G,H, J)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤


0.15

1.75

2.75

−2

 k = k1 + 1, . . . , k2

(J,K)


−1 0 0 0

1 0 0 0

0 1 0 0

0 −1 0 0

xk ≤

−1.4

1.75

2.75

−0.75

 k = k2 + 1, . . . , N

where again k1 and k2 are the switching times between the three sets of constraints.

In reference to the regions in Figure 4.3(b), the first inequality constrains the system

to be in regions F and G, the second inequality restricts the system to only be in

regions G, H and J, and the final constraint allows the system to be in regions J and

K.
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Results

For this example, the optimal path is always through the top region even though

a route through the bottom region is shorter. This is due to the large uncertainty

of the vertical position of the state which renders the bottom region infeasible with

respect to the chance constraints for choices of δ < 0.19. Figure 4.4(a)-(c) displays

the optimal solution resulting from using Boole’s method, the CVaR method, and

the ellipsoidal relaxation method for δ = 0.1. The optimal switching times for each

algorithm are k1 = 9 and k2 = 16. The computed constraint violation from Monte

Carlo simulation for Boole’s method was 0.095 (note the conservativeness due to

Boole’s inequality). The number of particles chosen for the CVaR method was 200

and the calculated probability of constraint violation is 0.042.

Qualitatively, both methods produce similar solutions, however, Boole’s method

takes more risk resulting in a 5% lower objective function cost. For all solutions, the

optimal trajectory curves toward the infeasible region in the beginning instead of fol-

lowing the center of the corridor. This initial deviation improves the overall objective

and is allowed because the rest of the path has a small probability of violating the

constraints.

A comparison of the probability of constraint violation statistics for different num-

bers of particles in the CVaR method is shown in Table 4.3. For each number of par-

ticles, 100 iterations of the algorithm was performed and the probability of constraint

violation was calculated through a Monte Carlo simulation. It is interesting to note

that as compared to the Example 3, a smaller number of particles is required to have

the maximum probability of constraint violation be below the allowed probability.

As stated above, the optimal route is around the top of the obstacle because the

bottom route is infeasible. Figure 4.4(d) shows a suboptimal solution, using Boole’s

method, for a path through the bottom region for an allowed constraint violation of

0.19. The system quickly follows the center of the corridor in the beginning, then

slowly approaches the goal location at the end in order to reduce the probability of

violating any constraints before the end of the planning horizon.
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Figure 4.4: The results for planning through the nonconvex region in Example 4.
The blue line with dash-dot ellipses, orange line with dash ellipses, and green line
with solid ellipses indicate which three sets of constraints are active. (a) The solution
using Boole’s method. (b) The solution using the CVaR method with Ns = 200. The
gray lines are the trajectories for each of the particles. (c) The solution using the
ellipsoidal relaxation method. (d) The results for planning through the bottom route
of the nonconvex region using Boole’s method with an allowed constraint violation of
δ = 0.19.
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Table 4.3: A comparison of the solution statistics for the CVaR algorithm for various
number of particles for a nonconvex known environment.

Ns mean δsim std. dev. δsim max δsim
100 0.061 0.021 0.151
200 0.047 0.015 0.091
300 0.042 0.010 0.068
400 0.042 0.0088 0.069
500 0.039 0.0070 0.062

4.5.3 Collision Avoidance

For the final example, a dynamic nonconvex motion planning example is chosen in

which multiple vehicles have to avoid each other while attempting to reach their own

goal locations. In contrast to the previous examples, this problem has a larger state

space and includes state coupling in the joint chance constraints. In the following

scenario, the vehicles were required to keep a minimum separation distance of 0.25

meters, which by definition is a nonconvex feasible region. Consequently, the same

approach will be employed as in the previous section to simplify the problem into

convex subproblems.

Example 5. Consider a collision avoidance scenario with three vehicles. All vehicles

have the same double integrator dynamics described by Eqn. (4.42) with ∆t = 0.1

seconds, a time-horizon of N = 20 and noise parameters given in Eqn. (4.43).

The objective function is,

φ(X,U) =
3∑
i=1

(
xiN − xiref

)T
Qobj

(
xiN − xiref

)
+ UTRobjU

with Qobj =

[
I 0

0 0

]
, Robj = 0.001I, xik is the state of vehicle i at the k-th time-step,

xiref is the reference state of vehicle i, and U is the concatenation of all the vehicle’s

control inputs.



CHAPTER 4. DETERMINISTIC CONSTRAINT PARAMETERS 73

The starting and goal locations for each of the vehicles are

x1
0 =


−0.87

0.5

0

0

 , x2
0 =


0.87

0.5

0

0

 , x3
0 =


2

0

0

0

 ,

x1
ref =


0.5

1.87

0

0

 , x2
ref =


−0.5

1.87

0

0

 , x3
ref =


0

0

0

0

 .

Due to the large number of feasible trajectories through the environment, the

allowed feasible region was restricted to reduce the computation time. Consequently,

only a locally optimal solution can be guaranteed which is the optimal solution within

the restricted feasible region. The decomposed regions are defined by,

(a)


[

1 0 0 0
]

(x1
k − x2

k) ≤ −0.25[
0 1 0 0

]
(x1

k − x3
k) ≤ −0.25 k = 1, . . . , k1[

0 1 0 0
]

(x2
k − x3

k) ≤ −0.25

(b)


[

0 1 0 0
]

(x1
k − x2

k) ≤ −0.25[
1 0 0 0

]
(x3

k − x1
k) ≤ −0.25 k = k1 + 1, . . . , k2[

1 0 0 0
]

(x3
k − x2

k) ≤ −0.25

(c)


[

0 1 0 0
]

(x3
k − x1

k) ≤ −0.25[
0 1 0 0

]
(x3

k − x2
k) ≤ −0.25 k = k2 + 1, . . . , N[

1 0 0 0
]

(x2
k − x1

k) ≤ −0.25

where again k1 and k2 are the times when the vehicle exits and enters the different

regions. In words, the constraints above are as follows: (a) requires vehicle 3 to be

above vehicles 1, 2 and vehicle 1 to be to the left of vehicle 2, (b) requires vehicle 3 to
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Figure 4.5: A three-vehicle collision avoidance scenario solved using Boole’s method
with an allowed constraint violation of δ = 0.1. In each plot, the vehicles are at-
tempting to reach their goal location marked by the ‘x’.

be to the left of vehicles 1, 2 and vehicle 2 to be above vehicle 1, (c) requires vehicle

3 to be below vehicles 1, 2 and vehicle 2 to be to the left of vehicle 1.

Only Boole’s method is presented here, but the CVaR method and the ellipsoidal

relaxation method produce qualitatively similar results. Figure 4.5 shows a series of

images of the vehicle locations for the expected trajectories for a problem with an

allowed constraint violation of δ = 0.1. For each of the subplots in the figure, the

system is in regions (a),(b),(b),(b),(c), respectively, of the decomposed environment.

4.6 Conclusions

This chapter presented three methods for solving the stochastic control problem with

deterministic constraint parameters and they were evaluated on several examples

of stochastic motion planning through known environments. It demonstrated that

the inherit stochasticity in the problem can be directly handled without drastically

increasing the computational complexity while rigorously providing the user’s desired

safety level. As already illustrated in Chapter 3, in the presented examples the

ellipsoidal relaxation method is the most conservative, however, it has the lowest

computational complexity. Boole’s method is slightly more computationally complex,

but generates the least conservative solution. The conservativeness is due to Boole’s

inequality, but the examples demonstrated that it was indeed small. This chapter also

illustrated the applicability of the CVaR method to handle these types of problems.



Chapter 5

Feedback Design and Risk

Allocation in Chance Constrained

Control

In the previous chapter, the controller was assumed to be fixed and the chance con-

straints were satisfied by optimizing over the desired trajectory. By using a fixed

controller, however, the system may be forced to take a longer, more costly route to

satisfy the chance constraints. For Example 4, the chosen feedback controller resulted

in a large vertical uncertainty in the system state which prevented the system from

proceeding through the shorter bottom route. Since the distribution of the closed-

loop system is dependent on the feedback controller parameters, the bottom route

could have been enabled by modifying the controller.

This chapter incorporates feedback controller design into the stochastic control

formulation, enabling the feedback controller to shape the uncertainty of the system

to make feasible previously infeasible solutions. In prior work [28], an ellipsoidal re-

laxation technique was used to solve this problem. For this method, a static, uniform

allocation of risk is assigned to each constraint transforming the problem into a de-

terministic program for optimizing the feedback parameters. However this results in

a large amount of conservatism, degrading the performance of the overall system.

To reduce the conservatism, this chapter presents a novel approach for optimizing
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over both the feedback controller and the risk allocation of the joint chance con-

straints. Instead of using the ellipsoidal relaxation technique, the joint chance con-

straints are handled using either Boole’s method or the CVaR method which results

in a tighter approximation. Using the CVaR method, the resulting optimization pro-

gram is convex and optimizes over both controller and risk allocation simultaneously.

However, the computational complexity grows quickly with the problem size, render-

ing some problems intractable to solve using this method. Consequently, the focus of

the chapter is on using Boole’s method. Direct application of Boole’s method yields

an optimization problem that is not readily solvable. Therefore, a two-stage optimiza-

tion algorithm is presented that alternates between optimizing the feedback controller

and the risk allocation until convergence. This solution methodology is shown to re-

duce the conservatism in previous approaches and improve the performance of the

overall system.

Example 4 presented in Section 4.5.2 is used to compare the proposed meth-

ods with the ellipsoidal relaxation method. Boole’s method is shown to enable the

previously infeasible path through the bottom route in this example, however, the el-

lipsoidal relaxation method still requires the system to take the suboptimal top route.

For this example, the CVaR method proved too computationally complex to use.

5.1 System Description

The system evolves according to

X = T xx0x0 + T xuU + T xwW (5.1)

Y = CX + T yvV (5.2)
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where in an abuse of notation C = [diag (C, . . . , C) 0] ∈ RpN×n(N+1) with diag(·)
forming a block diagonal matrix from its arguments,

T xx0 =



I

A1
0

A2
0

...

AN0


, T xu =



0

A1
1B0 0

A2
1B0 A2

2B1 0
...

. . .
... 0

AN1 B0 AN2 B1 . . . . . . ANNBN−1


,

T yv =


V0

V1

...

VN−1

 , T xw =



0

A1
1W0 0

A2
1W0 A2

2W1 0
...

. . .
... 0

AN1 W0 AN2 W1 . . . . . . ANNWN−1


,

(5.3)

where Akτ = Ak−1Ak−2 . . . Aτ with Akk = I.

A feedback controller can be used to shape the uncertainty of the system state,

facilitating the satisfaction of the chance constraints and improving the objective

function cost. As has been considered in the past [28, 88], only the set of affine causal

output feedback controllers will be considered here, i.e.,

uk = ūk +
k∑
τ=0

Kk,τyτ , k = 0, . . . , N − 1. (5.4)

The control law can also be defined in terms of a reference output, yrτ , i.e. uk =

ūk +
∑k

τ=0Kk,τ (yτ − yrτ ). The compact form of Eqn. (5.4) is given by,

U = Ū +KY (5.5)
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where

K =


K0,0 0 . . . 0

K1,0 K1,1
. . .

...
...

. . . 0

KN−1,0 KN−1,1 . . . KN−1,N−1

 , (5.6)

and Ū =
[
ūT

0 , . . . , ū
T
N−1

]T
.

Now the characteristics of the closed-loop state and input can be determined.

Substituting for X from Eqn. (5.2) yields,

Y = C (T xx0x0 + T xuU + T xwW) + T yvV. (5.7)

Substituting for U from Eqn. (5.5) results in,

Y = C
(
T xx0x0 + T xu

(
Ū +KY

)
+ T xwW

)
+ T yvV. (5.8)

After simplifying and combining common terms,

(I − CT xuK)Y = C
(
T xx0x0 + T xuŪ + T xwW

)
+ T yvV. (5.9)

The term CT xuK is lower triangular, therefore I − CT xuK is invertible. Solving for

Y yields,

Y = (I − CT xuK)−1 (C (T xx0x0 + T xuŪ + T xwW
)

+ T yvV
)
. (5.10)

Substituting this into Eqn. (5.5) and simplifying yields,

U = K (I − CT xuK)−1CT xx0x0 +
(
I +K (I − CT xuK)−1CT xu

)
Ū+

K (I − CT xuK)−1CT xwW +K (I − CT xuK)−1 T yvV.
(5.11)
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Substituting this into Eqn. (5.1) results in,

X =
(
I + T xuK (I − CT xuK)−1C

)
T xx0x0 + T xu

(
I +K (I − CT xuK)−1CT xu

)
Ū+(

I + T xuK (I − CT xuK)−1C
)
T xwW + T xuK (I − CT xuK)−1 T yvV.

(5.12)

Youla Parametrization

In the current problem formulation, the controller gains, K, are being optimized

in order to shape the covariance to satisfy the constraints and lower the objective

cost. In general, the program is not convex in the original design variables K and Ū.

However, [28, 88] showed by a change of variables the problem can be cast as a convex

optimization problem. This is accomplished by using the Youla parametrization as

follows,

Q = K (I − CT xuK)−1 . (5.13)

The original gain matrix K can then be efficiently solved for by

K = (I +QCT xu)−1Q, (5.14)

resulting in a block lower triangular matrix. Also, define

r = (I +QCT xu) Ū (5.15)

such that

Ū = (I +QCT xu)−1 r = (I +KCT xu) r. (5.16)

The variables Q and r can now be used in place of K and Ū to generate a convex

optimization program. Using this change of variables, the control input and state

simplify to

U = QCT xx0x0 + r +QCT xwW +QT yvV, (5.17)

X = (I + T xuQC)T xx0x0 + T xur + (I + T xuQC)T xwW + T xuQT yvV, (5.18)
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which are affine expressions in Q and r. Similarly, the uncertainty of the state and

control input can be expressed in terms of Q and r,

ΣX = LT xx0Σ0T
xx0TLT + LT xwΣWT

xwTLT + T xuQT yvΣVT
yvTQTT xuT, (5.19)

ΣU = QCT xx0Σ0T
xx0TCTQT +QCT xwΣWT

xwTCTQT +QT yvΣVT
yvTQT, (5.20)

where L = I + T xuQC.

Using the above formulations, the stochastic control problem with feedback design

reduces to the optimization program (5.21).

minimize
Q,r

E [φ(X,U)]

subject to

X = (I + T xuQC)T xx0x0 + T xur + (I + T xuQC)T xwW + T xuQT yvV
U = QCT xx0x0 + r +QCT xwW +QT yvV
W ∼ N (0,Σw)

V ∼ N (0,Σv)

Ū ∈ FU

ΣX = LT xx0Σ0T
xx0TLT + LT xwΣWT

xwTLT + T xuQΣVQ
TT xuT

L = I + T xuQC

P(HTX− b > 0) ≤ δ

Q lower triangular

(5.21)

The primary complication in solving the optimization program (5.21) is in eval-

uating and satisfying the state chance constraints. While they may first appear to

be easy to evaluate, the controller parameters can now affect the covariance ma-

trix, adding further complexity into satisfying the chance constraints and solving the

optimization program. Fortunately, there are many different ways to simplify the

problem, presented in the next section.
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5.2 Handling the Chance Constraints with Feed-

back Design

Previously when optimizing over the controller feedback gains ([28, 29]), an ellipsoidal

relaxation technique was used to simplify the constraints, typically leading to a very

conservative approximation of the probability of failure which increases the overall

objective cost. Another approach to simplify the chance constraints is to use Boole’s

inequality which provides a tighter approximation of the probability of failure at the

expense of a more complicated optimization program. The application of the CVaR

method to this problem formulation is straightforward and no modification of the

algorithm is needed. The subsections below describe how to apply the original for-

mulation of Boole’s and the ellipsoidal relaxation approaches presented in Chapter 3

to the feedback design problem.

Ellipsoidal Relaxation

In the ellipsoidal relaxation method, the original constraint P
(
HTX ≤ b

)
≥ 1 − δ is

replaced by requiring X̄ + Er ⊂ Fz which is equivalent to requiring

hT
i X̄ + r

√
hT
i ΣXhi ≤ bi, i = 1, . . . , q, (5.22)

where hi is the i-th column of H. These constraints form a set of second order cone

constraints.

Boole’s Inequality

Chapter 3 showed that the joint chance constraint P(HTX ≤ b) can be converted into

univariate integrals by using Boole’s inequality to conservatively bound the probabil-

ity of violation. If the constraints

1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
≤ δi∑

δi ≤ δ

(5.23)
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are satisfied then the original joint chance constraint will also be satisfied.

In the current problem formulation, both δi and ΣX are variables and there is

no tractable way of simultaneously optimizing over both. However, if either variable

is fixed then the optimization problem can be solved efficiently. This property is

exploited in the proposed solution methodology in Section 5.3 below.

For a fixed covariance, ΣX, and δ ≤ 0.5 the constraints in Eqn. (5.23) are convex

since the function Φ(x) is concave in the range x ∈ [0,∞) [31, 70]. If the risk

allocation, δi, is fixed such that
∑
δi ≤ δ then the constraints in Eqn. (5.23) can be

converted into equivalent second order cone constraints as follows. The constraints

require

1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
≤ δi, (5.24)

which can be simplified to

hT
i X̄ + Φ−1 (1− δi)

√
hT
i ΣXhi ≤ bi (5.25)

where Φ−1 is the inverse of the Gaussian cumulative distribution function. These

constraints are similar to the constraint for the ellipsoidal relaxation method in

Eqn. (5.22), however, the back-off parameter for Boole’s method (Φ−1(1 − δi)) is

less conservative. Finally, the standard deviation of the constraint uncertainty can

be converted into a second order cone constraint,√
hT
i ΣXhi =

∥∥∥[(I + T xuQC)T xx0Σ
1
2
0 , (I + T xuQC)T xwΣ

1
2
W, T

xuQT yvΣ
1
2
V

]
hi

∥∥∥ . (5.26)
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Boole’s or Ellipsoidal Relaxation Method Optimization Program

Using either method for bounding the chance constraints, the program (5.21) can be

simplified to (5.27).

minimize
Q,r

E (f(X,U))

subject to

X = (I + T xuQC)T xx0x0 + T xur + (I + T xuQC)T xwW + T xuQT yvV
U = QCT xx0x0 + r +QCT xwW +QT yvV
W ∼ N (0,Σw)

V ∼ N (0,Σv)

Ū ∈ FU

L = I + T xuQC

νi =
∥∥∥[LT xx0Σ

1
2
0 , LT

xwΣ
1
2
W, T

xuQT yvΣ
1
2
V

]
hi

∥∥∥
hT
i X̄ + βiνi ≤ bi, i = 1, . . . , q

Q lower triangular

(5.27)

In the optimization program (5.27), βi = r for the ellipsoidal relaxation technique,

or βi = Φ−1(1 − δi) for Boole’s method. For the ellipsoidal relaxation method the

parameters βi are fixed (given in Eqn. (3.9)), and the resulting optimization pro-

gram (5.27) is a convex Second Order Cone Program (SOCP). The fixed parameters

βi, however, will be shown to lead to conservative solutions. For the case of Boole’s

method, both βi and K are optimized, reducing the conservativeness of the resulting

solutions. Optimizing over both the controller parameters and the risk allocation si-

multaneously is not a straightforward procedure, since βi and νi are both involved in

a multiplicative constraint. However, given a fixed controller K or fixed risk alloca-

tion δi, the program (5.27) is a convex optimization problem which can be efficiently

solved. Using these facts, the next section presents a two-stage optimization method.
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5.3 Boole’s Method Solution Methodology: Two-

Stage Method

Given the complexity in simultaneously optimizing the risk allocation as well as the

controller parameters for Boole’s method, an iterative two-stage optimization scheme

is utilized for solving program (5.27). The upper stage allocates the risk associated

to each individual constraint while the lower stage solves a SOCP for the optimal

controller parameters given the current risk allocation. The primary difficulty in

solving this problem is devising the iterative risk allocation scheme for the upper

stage.

Upper Stage
Risk Allocation

Lower Stage
SOCP Solver

Risk
Allocation

Controller
Parameters

Figure 5.1: Two-stage optimization algorithm.

5.3.1 Upper Stage

There are several heuristic methods that can be devised for allocating the risk in

the upper stage. This subsection describes two such methods in further detail: the

bisection method and the optimal risk given a fixed controller method.

Bisection Method

The simplest heuristic to use is the bisection method presented in Algorithm 1, which

adjusts the uniform allocation of the risk until the actual risk is within a specified

threshold of the allowed value. The initialization of the method is described in Al-

gorithm 2. First, two uniform risk allocations are computed (in lines 3 and 6 of
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Algorithm 2) above and below the desired probability of constraint violation. A uni-

form risk allocation at the midpoint of these two allocations is then used to solve for

the controller parameters in the lower stage. The solution from the lower stage is then

used in Algorithm 1 to adjust the risk. If the true probability of constraint violation

(calculated in line 1 of Algorithm 1) is less than the allowed risk, then it replaces the

current lower bound, otherwise it replaces the upper bound. This is continued until

the actual risk is within a threshold of the allowed risk.

Algorithm 1 Bisection Method for Risk Allocation

1: δitrue =
∑

i 1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
2: if |δitrue − δ| ≤ ε then
3: Solution found.
4: end if
5: if δitrue ≥ δ then
6: δ = δi
7: else
8: δ = δi
9: end if
10: δi = 0.5(δ + δ)

Algorithm 2 Initialization for the Bisection Method

1: δ = δ/q
2: Perform optimization of (5.27) with βi = Φ−1(1− δ)

3: δtrue =
∑

i 1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
4: δ = 0.5
5: Perform optimization of (5.27) with βi = Φ−1(1− δ)

6: δtrue =
∑

i 1− Φ

(
bi − hT

i X̄√
hT
i ΣXhi

)
7: if δtrue < δ then
8: Solution found, no need to iterate.
9: end if
10: δi = 0.5(δ + δ)
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Optimal Risk Given Fixed Controller

As was stated before, if the controller parameters, K or Q, are fixed (and hence the

covariance ΣX is fixed) then the problem simplifies to a convex optimization program.

Consequently, for the case of a fixed controller, the optimal risk allocation, δi ∀i, for

the particular controller parameters can be efficiently computed. However, there is

no guarantee that this risk allocation is the optimal risk allocation for the original

problem.

5.3.2 Lower Stage

Once the risk allocation has been fixed, the program (5.27) simplifies to a standard

second order cone program which can be solved efficiently by many standard solvers.

5.4 Application: Motion Planning

The feedback design and risk allocation methods presented in this chapter are ap-

plicable to many different fields and is evaluated here on a variant of the stochastic

motion planning problem in Example 4. As shown in Figure 4.4, by using a fixed LQR

controller and Kalman filter estimator, the vehicle was forced to use the top route

because the bottom route was infeasible due to violating the joint chance constraints.

By instead optimizing over the feedback controller parameters, the uncertainty of the

system can be shaped to enable the previous infeasible solution.

Example 6. The following example is similar to Example 4 except for a Qobj =[
10I 0

0 0

]
and δ = 0.15. Here the δ was chosen to highlight the differences between

Boole’s and the ellipsoidal relaxation methods.

The results are shown in Figure 5.2. The solution with a fixed LQR trajectory

tracking controller and Kalman filter from Chapter 4 is shown in Figure 5.2(a) with

an objective function cost of 0.184. Here, the system had to take the suboptimal route

through the top; the bottom path was infeasible due to the large vertical uncertainty.
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The solution using feedback design with the ellipsoidal relaxation technique is shown

in Figure 5.2(b). Here, the system also has to take the suboptimal route through the

top of the environment because the relaxation method for the joint chance constraints

is too conservative. The objective function cost was 0.186 with a probability of failure

of 0.004 which is significantly less than the allowed risk.

The solution using the new two-stage algorithm presented in this chapter for

optimizing the output feedback controller parameters is shown in Figure 5.2(c-d).

Figure 5.2(c) shows the solution using the binary search upper stage algorithm. The

algorithm took 16 iterations for an ε = 1×10−5 and the objective function’s value was

0.120. In contrast, the solution using the optimal risk given fixed controller upper

stage algorithm, shown in Figure 5.2(d), only took 1 iteration. For this solution,

the upper stage was initialized with a uniform allocation of the risk δi = δ/q. The

trajectory for this allocation is shown as the black line. The final solution is shown as

the blue line with the 90% confidence ellipsoids around it. The initial objective cost

is 0.146 and the final objective cost is 0.116 which is a 26% relative improvement.

The CVaR method was also used to solve this problem, however, the optimization

program was tractable for only a very small number of particles and the solution

always violated the joint chance constraints during cross validation.

A comparison of the computation times for the various methods is shown in Ta-

ble 5.1. The computations were done using CVX [89] on a 2.7 GHz Intel Core i7. The

ellipsoidal relaxation algorithm is the fastest algorithm. The optimal risk two-stage

optimization method is 46% slower but results in a 60% better objective function

value. The binary search method is impractical to solve this particular problem, as

its computation time is over 10 times slower than the optimal risk method.

Table 5.1: A comparison of the computation times and objective function value for
the different solution methods.

Comp. Time (secs.) Objective
Ellipsoidal relaxation method 56 0.186

Optimal risk method 82 0.116
Binary search method 900 0.120

CVaR method – –
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(a) LQR, Fixed Control (b) Ellipsoidal relaxation method
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(c) Bisection Method (d) Optimal Risk Upper Stage Method

Figure 5.2: The solution and the confidence ellipsoids for a nonconvex environment
for Example 6. (a) Solution for an assumed LQR trajectory tracking controller as
used in Example 4. (b) The solution for the ellipsoidal relaxation method. (c) The
solution from the two stage algorithm using the bisection method for the upper stage.
(d) The solution for the optimal risk given fixed controller upper stage. The black
line is the solution from the SOCP solver assuming a uniform allocation of risk. The
blue line, with the confidence ellipsoids around it, is the solution using the controller
parameters from the first SOCP stage and optimizing the risk for each constraint.
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5.5 Conclusions

This chapter studied the problem of simultaneous feedback and risk allocation in

chance constrained control. Previously in Chapter 4, a chance constrained stochas-

tic control problem was investigated in which a fixed controller and estimator were

employed, and only the risk of violating each constraint was optimized. However,

this chapter showed that a better solution can be found by also optimizing over the

feedback parameters.

Currently, the method is only suitable for offline computations, however, real-time

operation could be employed by attempting to exploit structure in the optimization

program as well as by reducing the size of the feedback controller. One way to reduce

the size of the controller is to only use a subset of the previous measurements to

compute the control input, which does not affect the convexity of the problem. Even

without real-time operation, the presented method has the potential to have a large

impact on the performance of many systems.



Chapter 6

Stochastic Control for Jump

Markov Linear Systems

The previous chapters demonstrated how to handle the joint chance constraints using

both analytical and sampling methods. The analytical methods assume the distri-

bution of the system can be represented well by a Gaussian distribution. While this

assumption is valid for many of the motivating applications as presented in the pre-

vious chapters, there are cases for which this assumption does not hold. One such

example in which the probability distribution of the system is non-Gaussian is in

jump Markov linear systems, which consist of multiple discrete modes, each with

different continuous dynamics [90]. For these systems, the stochastic nature of the

discrete state results in a multimodal distribution of the future system state. In these

cases, the sampling methods are advantageous over the analytical methods due to

their ability to handle arbitrary distributions.

Jump Markov linear systems have many applications including modeling systems

with component failures. Another example, from the motivating applications in this

thesis, is in autonomous control of vehicles. To safely operate on multiple lane high-

ways, an autonomous vehicle must maintain a probability distribution of other cars’

lateral position in order to make safe passing decisions. This distribution is depen-

dent on several factors including the driver intent. One way of modeling this is to

use a jump Markov linear system with different probability distributions based on the

90
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state of the blinker of other cars. A blinker on would indicate a high probability that

a vehicle will change into the indicated lane, and a low probability of changing into

the opposite lane. This scenario leads to an arbitrary, multimodal distribution which

is difficult to capture analytically and thus requires the use of sampling methods as

described in this chapter.

The feedback control problem for jump Markov linear systems has been extensively

studied [90]. This previous work was primarily concerned with solving the feedback

control problem to minimize the expected value of a cost function given the value of

the state and mode at the current time-step. In contrast, this chapter is concerned

with the predictive stochastic control problem which takes into account the future

distribution of the system in order to control it to satisfy the system’s constraints.

Using this formulation, Blackmore et al. [91] proposed a stochastic control algorithm

via sampling which used the Mixed Integer Programming (MIP) method to handle

the chance constraints, however, the resulting optimization problem is nonconvex.

This solution technique is NP-hard in the number of binary variables used in the

problem formulation [92, 93], and consequently the computational requirements grow

exponentially as the number of samples needed to model the problem increases.

This chapter proposes using the CVaR method rather than MIP to handle the

chance constraints in the stochastic control problem for jump Markov linear systems.

The resulting optimization program is convex, leading to faster solutions than MIP.

To highlight the differences between the MIP and CVaR methods, they are compared

in a vehicle planning problem involving brake failures. In this example, while both

methods yield nearly identical planning results, the CVaR method is shown to reduce

the computation time by a factor of 10 over MIP.

6.1 System Description

In this chapter, the system dynamics are described by a jump Markov linear system

formulated as a discrete-time stochastic hybrid system. The system state at time-step

k contains both a continuous state xk and a discrete mode σk. The continuous state
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and output of the stochastic switched system evolve according to

xk+1 = Aσkxk +Bσkuk +Wσkwk, (6.1)

yk = Cσkyk + Vσkvk, (6.2)

where wk and vk are the process and output noises with known probability distribu-

tions p(wk) and p(vk). The discrete mode σk ∈ {1, . . . ,M} is a Markov chain that

evolves according to

P(σk+1 = j|σk = i) = Tij, (6.3)

where T ∈ RM×M is the transition matrix. The initial distribution of the continuous-

discrete state is assumed to be known and given by p(x0, σ0). The discrete mode is

assumed to be independent of the continuous state and continuous input.

Given the independence of the discrete and continuous states, the probability

distribution of the hybrid continuous-discrete state is

P (X,σ|U,Y) = P (X|σ,U,Y) P (σ) , (6.4)

where σ = [σ0, . . . , σN ]T and N is the finite time horizon. In general, even if all

the continuous distributions, P (X|σ,U,Y), are Gaussian, the total distribution is

a multimodal, non-Gaussian distribution due to mode switching. These types of

systems illustrate the benefit of the sampling methods introduced in Chapter 3 over

the analytical methods. While the sampling methods are able to handle arbitrary

distributions, the analytical methods use a Gaussian distribution which poorly models

the true distribution, leading to violation of the joint chance constraints.

The following section reviews the aspects of random variable sampling that are

most relevant to applying the sampling methods for stochastic control of jump Markov

linear systems.
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6.2 Sampling from Random Variables

The typical way of dealing with non-parametric probability distributions is to approx-

imate them with samples drawn from the distribution, instead of using an analytical

function [94]. This technique has lead to many tractable algorithms in estimation and

control. The properties of standard and importance sampling strategies are reviewed

below.

Standard Sampling Strategy

As presented in Section 3.2, a multivariate random variable z with known probabil-

ity distribution p(z) can be approximated by drawing Ns independent, identically

distributed random samples: {
z(1), . . . , z(Ns)

}
. (6.5)

The samples can be used to efficiently evaluate expressions involving the random

variable. For stochastic control, the two relevant expressions are the expectation and

the probability of an event. The expectation can be efficiently approximated using

the sample mean.

E [f (z)] =

∫
z

f (z) p(z)dz ≈ 1

Ns

Ns∑
i=1

f
(
z(i)
)

(6.6)

As the number of samples tends to infinity, the sample mean will converge to the true

value of the expectation.

In chance constrained control, the samples are also used to approximate the prob-

ability of an event occurring in the joint chance constraints, i.e.,

P (ψ(z) > 0) =

∫
z

1(ψ(z) > 0)p(z)dz ≈ 1

Ns

Ns∑
i=1

1(ψ(z(i)) > 0). (6.7)

Again, as the number of samples tends to infinity, this approximation approaches the

true probability of an event occurring. Consequently, if a large number of samples
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is used, then there is a high confidence that the approximation of the event proba-

bility is close to the true probability. However, representing low probability regions

of the underlying distribution requires a large number of samples, which for some

applications is intractable. Indeed, this is shown to be the case for the standard MIP

approach (formulated in Section 3.2.1) applied to stochastic control of jump Markov

linear systems [91].

Importance Sampling Strategy

To deal with this case, importance sampling can be used in which samples are drawn

from an alternative proposal distribution [94]. This method has the benefit of being

able to choose where to draw samples, making it easier to represent all areas of the

probability distribution with a small number of samples.

In importance sampling, Ns independent, identically distributed random samples{
z(1), . . . , z(Ns)

}
are generated from the proposal distribution, q(z), which is defined

such that p(z) > 0 implies q(z) > 0. For each sample, an importance weight wi is

calculated via wi = p(z(i))/q(z(i)). The expectation of a function is then calculated

by

E [f (z)] ≈ 1

Ns

Ns∑
i=1

wif
(
z(i)
)
. (6.8)

In contrast to the standard sampling method, the samples have a non-uniform weight-

ing. Similarly, the probability of the event occurring in the joint chance constraints

is calculated by the weighted sum

P (ψ(z) > 0) ≈ 1

Ns

Ns∑
i=1

wi1(ψ(z(i)) > 0). (6.9)

For the importance sampling method, both the expectation and the probability of an

event occurring converge to the true value as the number of samples tends to infinity.

The next section describes the application of these sampling methods to stochastic

control of jump Markov systems.
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6.3 Stochastic Control using Sampling

The procedure for solving the chance constrained control problem using sampling is

described in Algorithm 3 [91]. In Step 1, either the standard sampling or the impor-

Algorithm 3 Stochastic Control via Sampling Algorithm

1: Generate Ns samples from the distribution of the initial state, process and mea-
surement noises, and discrete mode sequence.

2: Express the distribution of the future system states using the generated samples.
The state trajectory is a function of the initial state, process and measurement
noises, discrete mode sequence for that particular sample, as well as the control
inputs, U, that are applied to all samples.

3: Use the samples to evaluate and satisfy the joint chance constraints.
4: Approximate the objective function using the samples.
5: Solve the deterministic constrained optimization program for the control inputs

U.

tance sampling technique can be used to generate the samples. However, typically

the importance sampling strategy is preferred as it can use fewer samples to accu-

rately represent the distribution. The primary difference between the MIP and CVaR

methods is in the evaluation of the joint chance constraints in Step 3. The details of

these two methods is described below.

Mixed Integer Programming

The MIP method approximates the joint chance constraints using importance sam-

pling as follows,

P
(
HTX− b > 0

)
≈ 1

Ns

Ns∑
i=1

wi1
(
HTX(i) − b > 0

)
≤ δ, (6.10)

where 1(·) is the indicator function. Unfortunately, these constraints lead to a noncon-

vex, mixed integer program because the only way to represent the indicator function

is by using binary variables.

The computational complexity of a MIP is exponential in the number of binary

variables needed to express the optimization program. Since one binary is needed for
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each sample, importance sampling is required for this approach in order to make the

chance constraint evaluation tractable.

CVaR Method

The CVaR method bounds the joint chance constraints by enforcing

E
[(

max(HTX− b+ α)
)

+

]
≤ αδ, (6.11)

where the expectation is evaluated using importance sampling as follows

1

Ns

Ns∑
i=1

wi max{max(HTX(i) − b+ α), 0}. (6.12)

As was shown in Section 3.2.3, the constraint in Eqn. (6.11) is convex, and therefore

the CVaR method has a drastically smaller computational complexity over the MIP

method. This will be illustrated in example in the following section.

6.4 Vehicle Brake Failure Example

The example presented in [91] is used here to compare the MIP technique with the

proposed CVaR method. In this example, a vehicle traveling in one dimension is

attempting to park without colliding with a nearby wall, as shown in Figure 6.1.

The car has two discrete modes: (1) the brakes are functional and can apply full

control braking authority, and (2) the brakes have failed and have no control braking

authority.

Example 7. Consider a vehicle with dynamics given by

xk+1 =

[
1 0.940

0 0.883

]
xk +Bσk(uk + wk), (6.13)

where wk is the process noise with the following distribution wk ∼ N (0, 1 × 10−5I),
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Figure 6.1: Illustration of the vehicle planning problem with break failure. The
vehicle’s objective is to park at the gray patch without colliding with the brick wall
on the right.

and Bσk can take on two different forms depending on the status of the brakes:

Bσk =



[
0.48 −0.48

0.94 −0.94

]
, σk = brakes ok[

0.48 0

0.94 0

]
, σk = brakes faulty.

(6.14)

The control input is composed of two quantities upower and ubrake: uk =

[
upower

ubrake

]
.

When the system is in mode 2, the brakes are not functional and therefore ubrake

cannot affect the system dynamics. Both terms of the control input are constrained

to be greater than zero: uk ≥ 0. Also, since the brakes can only decelerate the vehicle,

the velocity is constrained to be greater than or equal to zero:
[

0 1
]
xk ≥ 0 for all

k = 1, . . . , N .

The discrete mode is a Markov chain with the following transition matrix

T =

[
0.999 0.001

0.0 1.0

]
. (6.15)

At every time-step the brakes have a 0.001 probability of failing, and once the brakes

have failed they cannot return to being functional.

The system is deemed to have failed if the vehicle collides with the wall at any
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time-step. This leads to the following joint chance constraint

P
([

0 1
]
xk > 10, k = 1, . . . , N

)
≤ δ. (6.16)

The allowed probability of constraint violation is δ = 0.01 and the time horizon is

N = 20. The objective function for this problem is

φ(X,U) =
N∑

k=tparked

(
xk −

[
8

0

])T [
0 0

0 1

](
xk −

[
8

0

])
+ 0.1UTU (6.17)

where tparked = 10 is the time-step that the vehicle should be at the parking space.

The MIP and CVaR methods are used to solve the resulting optimization program

using Ns = 1000 samples to represent the uncertainty of the system. Figure 6.2 shows

the resulting solution and control inputs for the two methods. Both solutions apply

the maximum acceleration at the beginning and then apply the maximum braking

force for one time-step. The only difference between the two solutions is a slight

variation of the braking input applied between time-steps 7 to 10. After time-step

10, no control input is applied to the system.

As depicted in Figures 6.2(a-b), this control scheme results in three distinct sets

of trajectories. One set of trajectories results in colliding with the wall due to a brake

failure before time-step 4. The second set of trajectories overshoots the parking

space, but avoids colliding with the wall. The final set of trajectories safely reaches

the desired parking space at 8 meters.

A comparison of the computation time and the simulated true violation prob-

ability for the MIP and CVaR methods is shown in Table 6.1. The computation

time is the average of 100 different iterations of each algorithm. The true violation

probability was calculated through Monte Carlo simulations for the solution shown in

Figure 6.2. The MIP method is more than 10 times slower computationally than the

CVaR method. This is to be expected since the MIP method uses binary variables

(the computational complexity of a MIP is exponential in the number of binary vari-

ables) while the CVaR method is a convex optimization program. The true violation
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Figure 6.2: Results for the car planning failure example with the CVaR and MIP
methods. (a)-(b) The samples of the position state for the CVaR and MIP methods.
The blue dotted line is the location of the parking space. (c)-(d) The percentage of
maximum control effort for the CVaR and MIP methods.

probability for both methods is almost identical.

Table 6.1: Timing results for the jump Markov linear system example
Method time (secs.) true δ
CVaR 21.6 0.0080
MIP 237.4 0.0078

6.5 Conclusions

This chapter studied the problem of stochastic control of jump Markov linear systems.

Due to the inherent hybrid system description, the probability distribution of the

system is poorly represented as a Gaussian distribution. Consequently, only the

sampling methods are applicable for handling the joint chance constraints. In prior

work, the MIP technique was used to solve this problem, however, it was shown that

the CVaR method is also applicable to this problem. The optimization problem for

the CVaR method is convex, resulting in a significant reduction in the computational
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complexity over the MIP technique. The computational benefit of CVaR over MIP

was demonstrated through a vehicle planning example with brake failure.

In the following chapters, the framework is extended to handle uncertainty in the

constraint parameters. This adds further complexity to the problem solution because

the probability distribution is now the sum of products of random variables. In Chap-

ter 7, three methods are explored for handling the joint chance constraints: Gaussian

approximation method, CVaR method, and a new hybrid method. In Chapter 8, a

dual control method is proposed to incorporate external sensing of the constraint pa-

rameters. This method trades off between completing its objective and exploring to

gain more information to better complete its objective. Finally, in Chapter 9 the dual

control stochastic control algorithm is experimentally demonstrated on a quadrotor

unmanned aerial vehicle for a stochastic motion planning problem.



Chapter 7

Stochastic Control with Uncertain

Constraint Parameters

The previous chapters demonstrated the success of incorporating the uncertainty of

the system into the stochastic control problem formulation and solving the resulting

optimal control problem. In all of the examples presented thus far, the constraint

parameters were assumed to be deterministic, however, in general the constraints

may themselves also have some uncertainty. An example of when this might occur is

in robotic navigation. After a natural disaster, a robot used in a search and rescue

operation might use original blueprints of a building as a general navigation guide,

while the disaster could have caused significant changes to the building structure.

Another example is navigating through moving obstacles that can be affected by

unknown disturbances.

This chapter and the next increase the applicability of the proposed framework by

extending it to handle uncertain constraint parameters. This extension presents sev-

eral challenges. If all of the affine constraint parameters are allowed to be uncertain,

then the general probability distribution will be summations of products of random

variables. Typically, there is no analytic, closed-form function for the resulting prob-

ability distribution of the constraint, making it difficult to apply some of the solution

methods presented in the earlier chapters. In addition, while future measurements of

101
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the system state can easily be accounted for in the current formulation, if the sys-

tem can also take measurements of the uncertain constraint parameters the resulting

problem formulation is a dual control problem which in general is intractable.

This chapter focuses on solving the stochastic control problem with uncertain con-

straints without the ability to directly sense the constraint parameters. Fortunately,

for low-dimensional systems the constraints are shown to be approximated well by

a univariate Gaussian distribution and can be evaluated efficiently. Boole’s method

can then use this approximate distribution to solve the stochastic control problem.

Unfortunately, the resulting optimization program is nonconvex and therefore only

a locally optimal solution can be guaranteed. In addition, the resulting solution is

more conservative than for deterministic constraint parameters due to the increased

correlation between time-steps which is ignored in Boole’s inequality. However, the

solutions are still reasonable.

In addition, the CVaR method will be shown to be applicable to solving these

problems, handling the increased complexity of the uncertain parameters through

sampling. However, the increased complexity of the resulting optimization program

yields large computation times, restricting this method from being used in real-time

applications.

A novel hybrid approach is also developed in this chapter, using a combination

of sampling and analytic functions to represent the probability distributions of the

system and constraint parameters. This method proves to be superior over the in-

dividual Boole’s and CVaR method approaches. The hybrid approach results in a

convex optimization program under certain conditions, guaranteeing the optimal so-

lution. It also decreases the conservativeness of the solution over the approximation

method. As compared to the CVaR method, typically fewer samples are needed which

reduces the computational complexity and enables real-time operation.

Chapter 8 will investigate a tractable way of solving the dual control problem to

enable the incorporation of new sensing of the constraint parameters into the problem

solution.
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7.1 System Description

In this chapter, the initial state, process noise and measurement noise are assumed

to be independent Gaussian random variables distributed according to

x0 ∼ N (x̄0,Σ0), wk ∼ N (0,Σw) ∀k, vk ∼ N (0,Σv) ∀k. (7.1)

As in Chapter 4, a Kalman filter is used to estimate the system state and the system

is controlled via a linear quadratic trajectory tracking controller. The properties of

the closed-loop system state and control input were derived in Section 4.1 and shown

to be described by a Gaussian distribution with known mean and covariance. This

will be exploited below in the evaluation of the chance constraints.

In the previous chapters, the constraint parameters H and b were assumed to be

deterministic, however, in this chapter the constraint parameters are also allowed to

be stochastic. If only the parameter b is stochastic, then handling the constraint is

straight forward. Furthermore, if the parameter b is given by a Gaussian distribution

then the constraint HTX − b is also a Gaussian distribution. Consequently, the

methods in Chapter 4 would be directly applicable after calculating the mean and

covariance of the constraint.

However, if both parameters (H and b) are stochastic, then the evaluation of the

chance constraints as well as the solution of the optimization program becomes more

complex. In particular, by allowing H and b to be uncertain, the distribution of

HTX − b becomes a sum of multiple products of random variables. In general, the

properties of the probability distribution for this constraint are not easy to calculate

analytically, increasing the complexity of the problem. The following section describes

three approaches to deal with such uncertain constraint parameters.
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7.2 Chance Constraints with Uncertain Parame-

ters and Variables

This section describes three approaches for dealing with the added complexity in the

chance constraints. The first approach, Boole’s method, exploits properties of the

constraint’s probability distribution and approximates it with a distribution that is

easier to evaluate. The second approach uses sampling to represent the uncertainty

and uses the CVaR method to enforce the chance constraints. In the third approach,

a novel hybrid method is developed that uses both analytic functions and sampling

to represent the probability distributions.

7.2.1 Boole’s Method

In Boole’s method, the joint chance constraints are upper bounded by a sum of

univariate constraints:

P
(
HTX > b

)
≤

q∑
i=1

P(hT
i X > bi). (7.2)

Due to the central limit theorem, if the dimension of the state space is large enough

then the expression hT
i Xj − bi can be approximated well by a univariate Gaussian

distribution, eliminating the need to evaluate multivariate integrals. Given this con-

version, the probability of constraint violation can be evaluated efficiently.

If the system state and the constraint parameters are independent, then the mean

of the distribution is,

E[hT
i X− bi] = E[hi]

TE[X]− E[bi] = h̄T
i X̄− b̄i, (7.3)

and the covariance is,

var(hT
i X− bi) =

nN∑
j=1

var(hijXj) + var(bi) +
nN∑
j,k

cov(hijXj, hikXk) +
nN∑
j=1

cov(hijXj, bi).

(7.4)
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To simplify later notation, let σ2
i = var(hT

i X− bi).
Recall from Section 3.1.2 that by using Boole’s inequality, the multivariate con-

straints are bounded by a sum of univariate constraints in Eqn. (3.18). Each univari-

ate constraint can be approximated well as a Gaussian with mean and variance as

given in Eqns. (7.3) and (7.4) respectively. The univariate constraints can then be

efficiently evaluated through

P(hT
i X− bi > 0) =

1√
2π

∫ ∞
b̄i−h̄T

i
X̄

σi

exp

(
−z

2

2

)
dz

= 1− Φ

(
b̄i − h̄T

i X̄
σi

)
,

(7.5)

where Φ(·) is the Gaussian cumulative distribution function. Although this func-

tion does not have an analytic solution, it can be efficiently evaluated using a series

approximation or a lookup table.

Optimization Program

Program (7.6) shows the resulting optimization problem using Boole’s method with

uncertain constraint parameters. The program modifies the program (4.37) for de-

terministic parameters by incorporating the evaluation of the chance constraints in

Eqn. (7.5). The variable that is being optimized is the desired trajectory, Xd, for the

controller to follow.

minimize
Xd

E [φ(X,U)]

subject to

X̄ = T xxx̄0 + T xx
dXd

Ū = T ux0x̄0 + T ux
dXd

Ū ∈ FU

zi = b̄i − h̄T
i X̄, ∀i

σ2
i = var(hT

i X− bi), ∀i
1− Φ( zi

σi
) ≤ εi, ∀i∑q

i=1 εi ≤ δ

(7.6)
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The optimization program (7.6) is not necessarily convex. The convexity of the

program depends on the convexity of the chance constraints, which are convex only

if Φ(·) is concave. It can be shown that the function Φ( zi
σi

) is concave if zi/σi is both

positive and concave (from convex composition rules). Since b̄i − h̄T
i X̄ preserves the

convexity or concavity of 1/σi, the concavity of zi/σi depends solely on the concavity

of 1/σi. Unfortunately, σi may be the composition of a concave, non-decreasing

function (square root) with a convex expression (quadratic) of the state mean which

is not guaranteed to be convex or concave on the entire domain. As a result, the

program cannot be guaranteed to be convex.

Gradient of the Chance Constraints

The gradient of the chance constraints can be computed analytically to aid in the

solution of the optimization problem. From the chain rule,

∇XdP
(
hT
i X− bi > 0

)
=
∂P
(
hT
i X− bi > 0

)
∂X̄

∇xdX̄. (7.7)

From Eqn. (7.5) and the Leibniz integral rule,

∂P
(
hT
i X− bi > 0

)
∂X̄

=
1√
2π

exp

(
−(bi − hT

i X̄)2

2σ2
i

)[
h̄T
i

σi
+
b̄i − h̄T

i X̄
σ2
i

∂σi
∂X̄

]
. (7.8)

Finally, the gradient of X̄ with respect to Xd is ∇XdX̄ = T xx
d

which results in,

∇XdP
(
hT
i X− bi > 0

)
=

1√
2π

exp

(
−(bi − hT

i X̄)2

2σ2
i

)
T xx

dT
[
h̄T
i

σi
+
b̄i − h̄T

i X̄
σ2
i

∂σi
∂X̄

]T

.

(7.9)

Qualification of the Gaussian Constraint Approximation

The methodology for Boole’s approach assumed that the distribution of the con-

straints can be approximated well by a Gaussian distribution. In order to qualify

this approximation, a Monte Carlo simulation was performed to compute the distri-

bution of the constraint. Figure 7.1 shows the resulting histogram of the value of the
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constraint from the Monte Carlo simulation as compared with the analytical Gaus-

sian approximation (dotted line). As the figure shows, the Gaussian approximation

matches the Monte Carlo evaluation of the constraint well.

−200 0 200
−5

0

5
x 10−5

(a) (b)

Figure 7.1: A comparison of the analytical Gaussian approximation for the chance
constraint with uncertain parameters. (a) Randomly generated constraint (solid) and
the Gaussian approximation (dotted). (b) The error of the approximation.

Another Monte Carlo simulation of the Gaussian approximation was performed to

compare the predicted probability of constraint violation. The constraint and system

parameters were generated such that the true probability of constraint violation was

0.1. The average Gaussian approximation error for this case was 1.64%. The reason

the Gaussian approximation overestimates the violation probability is because the

tails of the distribution are difficult to capture through random sampling.

7.2.2 CVaR Method

Another approach to handling the uncertainty in the constraint parameters is to use

sampling. In this approach, the constraint parameters are sampled in addition to the

distributions of the process noise, measurement noise, and initial state. This results
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in the following set of particles

{w(1)
0 , . . . , w

(1)
N−1, . . . , w

(Ns)
0 , . . . , w

(Ns)
N−1},

{v(1)
0 , . . . , v

(1)
N−1, . . . , v

(Ns)
0 , . . . , v

(Ns)
N−1},

{x(1)
0 , . . . , x

(Ns)
0 },

{H(1), . . . , H(Ns)},
{b(1), . . . , b(Ns)}.

(7.10)

In order to use the CVaR method, the expectation in Eqn. (3.41) is not only over

the system state but also over the uncertain constraint parameters. To calculate the

expectation, each system trajectory particle X(j) is associated with a set of constraint

parameters H(j) and b(j) for all j = 1, . . . , Ns as follows

E
[(

max
(
HTX− b

)
+ α

)
+

]
≈ 1

Ns

Ns∑
j=1

(
max

(
H(j)TX(j) − b(j)

)
+ α

)
+
. (7.11)

7.2.3 Hybrid Method

The two approaches presented thus far for handling uncertain constraint parameters

either approximate the constraints’ probability distribution analytically or use sam-

pling. However, both approaches have limitations which can be reduced by employing

a hybrid approach using a combination of analytical functions and sampling to repre-

sent the probability distributions. In particular, for some problem formulations, the

stochastic variables are naturally separable into two sets: one set that can be accu-

rately represented through an analytic function, and another set whose distribution

is best represented through sampling. This section develops this hybrid method, dis-

cusses how to handle the joint chance constraints under the separation of variables,

and shows that the resulting optimization program is convex.

Figure 7.2 shows an example of a problem whose stochastic variables naturally

separate as described above. In this example, a vehicle is navigating through an uncer-

tain environment. Here, the environment is defined by a set of half plane constraints

defined by a series of end points, which are assumed to be normally distributed. The

figure shows a solution using an insufficient number of particles (50) to truly represent
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the underlying distribution of the stochastic variables. This results in 30 times the

allowed probability of constraint violation for this solution. The ellipses show the

99.7% confidence regions for the exact distribution of the stochastic variables. As

is illustrated, the samples of the system state do not truly represent the underlying

distribution, whereas the samples of the uncertain environment represent the wall end

point distributions well. Consequently, in this example an improved solution could be

found by representing the uncertain environment through sampling and representing

the system state through its exact analytical function.
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Figure 7.2: An illustration of the solution for a small number of particles (50) used
to represent the uncertainty.

In the following development of the hybrid method, sampling is used to represent

the uncertain constraints and analytical functions are used to represent the uncer-

tainty of the system state. A similar approach can be used to employ the hybrid

method for other separations of the uncertainty representation.

For the chosen uncertainty representation, only the constraint parameters are

sampled, resulting in the following set of particles

{H(1), . . . , H(Ns)},
{b(1), . . . , b(Ns)}.

(7.12)
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The distribution of the closed-loop state, X, and the closed-loop control input, U, are

represented analytically with distributions given by Eqn. (4.24). Using this hybrid

representation of the uncertainty, none of the current methods for enforcing the joint

chance constraints, P
(
HTX− b > 0

)
≤ δ, are readily applicable.

Using Boole’s method with sampling of the uncertain constraint parameters, the

probability of constraint violation is approximated as follows:

1

Ns

∑Ns
j=1

(
1− P(h

(j)
i

T
X > b

(j)
i )
)
≤ εi, i = 1, . . . , q,∑q

i=1 εi ≤ δ.
(7.13)

Using the analytical function for the probability distribution of the state, this simpli-

fies even further to

1

Ns

∑Ns
j=1

1− Φ

 b
(j)
i − h

(j)
i

T
X̄√

h
(j)
i

T
ΣXh

(j)
i

 ≤ εi, i = 1, . . . , Nc

∑
εi ≤ δ.

(7.14)

The final optimization program for the hybrid approach is given by:

minimize
Xd

E [φ(X,U)]

subject to

X̄ = T xxx̄0 + T xxdXd

Ū = T ux0x̄0 + T uxdXd

Ū ∈ FU

zji = b
(j)
i − h

(j)
i

T
X̄, ∀i, j

σ2
ji = h

(j)
i

T
ΣXh

(j)
i , ∀i, j

1

Ns

∑Ns
j=1

(
1− Φ(

zji
σji

)
)
≤ εi, ∀i∑q

i=1 εi ≤ δ

(7.15)

The optimization program is convex if b
(j)
i ≥ h

(j)
i

T
X̄ for all j = 1, . . . , Ns and

i = 1, . . . , q. To show this, consider two feasible solutions
(
X̄(1), ε

(1)
i

)
and

(
X̄(2), ε

(2)
i

)
.
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To show the constraints are convex, it suffices to show that the convex combination

of two feasible solutions is feasible. Define the convex combination for 0 ≤ θ ≤ 1 as(
X̄(∗), ε

(∗)
i

)
,
(
θX̄(1) + (1− θ)X̄(2), θε

(1)
i + (1− θ)ε(2)

i

)
.

From the concavity of the Gaussian cumulative distribution function Φ(z) for z ∈
[0,∞), the lefthand side of Eqn. (7.14) for

(
X̄(∗), ε

(∗)
i

)
can be upper bounded by

1

Ns

∑Ns
j=1

1− Φ

b(j)
i − h

(j)
i

T
X̄(∗)√

h
(j)
i

T
ΣXh

(j)
i


≤ 1

Ns

∑Ns
j=1

1− θΦ

b(j)
i − h

(j)
i

T
X̄(1)√

h
(j)
i

T
ΣXh

(j)
i

− (1− θ)Φ

b(j)
i − h

(j)
i

T
X̄(2)√

h
(j)
i

T
ΣXh

(j)
i

 .

After simplifying and collecting common terms

= 1− 1

Ns

Ns∑
j=1

θΦ

b(j)
i − h

(j)
i

T
X̄(1)√

h
(j)
i

T
ΣXh

(j)
i

− 1

Ns

Ns∑
j=1

(1− θ)Φ

b(j)
i − h

(j)
i

T
X̄(2)√

h
(j)
i

T
ΣXh

(j)
i

 . (7.16)

From the definition of the two feasible solutions it is known that

− 1

Ns

Ns∑
j=1

Φ

b(j)
i − h

(j)
i

T
X̄(k)√

h
(j)
i

T
ΣXh

(j)
i

 ≤ ε
(k)
i − 1 k = 1, 2.

Substituting this into Eqn. (7.16) and simplifying yields,

≤ 1 + θ(ε
(1)
i − 1) + (1− θ)(ε(2)

i − 1)

= θε
(1)
i + (1− θ)ε(2)

i

= ε
(∗)
i .

Hence the constraint in Eqn. (7.14) is convex in X̄ and εi. Therefore, the optimization

program (7.15) is also convex if b
(j)
i ≥ h

(j)
i

T
X̄ for all j = 1, . . . , Ns and i = 1, . . . , q.

Given a general uncertainty model of the constraints, there is no guarantee that
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b
(j)
i ≥ h

(j)
i

T
X̄. However, if the constraints b

(j)
i − h

(j)
i

T
X̄ ≥ 0 ∀i, j are added to the

optimization program and none of the constraints are active, then the globally optimal

solution can be guaranteed.

As will be illustrated in the following examples, the hybrid approach has several

benefits over the Gaussian approximation approach and the CVaR method. Since the

hybrid approach is a convex program, it typically can be solved faster than the non-

convex program in the Gaussian approximation method. Due to using both sampling

and analytical distributions to represent the uncertainty, fewer particles are needed to

fully represent the underlying uncertainty than when only using sampling. As com-

pared to the CVaR method, this drastically reduces the computational complexity of

the problem formulation.

7.3 Case Study: Motion Planning in a

2-Dimensional Environment

The previously described methods for handling uncertain constraints are demon-

strated in this section through two examples of stochastic motion planning in a 2D

environment.

7.3.1 Environment Description

The environment is assumed to be defined by a set of half plane constraints defined

by a series of end points. It is assumed that the end points for the i-th constraint, ei1

and ei2, are independent and normally distributed,

eij ∼ N

[ ēixj

ēiyj

]
,

 σ2
eixj

0

0 σ2
eiyj

 , ∀i. (7.17)

In an abuse of notation, let pk = [xk yk]
T be the 2D position of the vehicle at time-

step k with mean p̄k = [x̄k ȳk]
T and covariance cov (pk) =

[
σ2
xk

σ2
xkyk

σ2
xkyk

σ2
yk

]
. The
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expression for the feasible region of the system state is then:

FX =
{
x : hT

i pk ≤ bi,∀(i, k) ∈ C
}

(7.18)

where C is the set of constraints on the system. The vector hi is defined as the outward

pointing normal of half plane i (and without loss of generality is assumed to be a 90o

counterclockwise rotation of the vector between the end points):

hi =

[
0 −1

1 0

][
eix2 − eix1

eiy2 − eiy1

]
=

[
eiy1 − eiy2

eix2 − eix1

]
. (7.19)

The term bi can be calculated using the normal vector, hi, and one of the end points,

bi = hT
i

[
eix2

eiy2

]
= eix2e

i
y1 − eix1e

i
y2. (7.20)

The variance of the univariate chance constraint is then:

var(hT
i pk − bi) = α5x̄

2
k + α6x̄k + α7ȳ

2
k + α8ȳk + α0, (7.21)

and can be calculated through standard probability theory. The parameters αi can

be computed a priori, but the variance depends upon the system state and conse-

quently the control inputs, rendering the optimization program (7.6) for the Gaussian

approximation method nonconvex.

Given the uncertainty of the end points, the half plane description is distributed

via

hi ∼ N

[ ēiy1 − ēiy2

ēix2 − ēix1

]
,

 σ2
eiy1

+ σ2
eiy2

0

0 σ2
eix1

+ σ2
eix2

 , (7.22)

and the constant bi has a distribution equal to the difference of two products of

Gaussians.
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The chance constraint expands to,

P

eiy1
xk − eiy2

xk + eix2
yk − eix1

yk + eix1
eiy2
− eix2

eiy1︸ ︷︷ ︸
cik

> 0

 . (7.23)

7.3.2 Evaluation of the Chance Constraints For Boole’s

Method

The expression from Eqn. (7.23),

cik = eiy1
xk − eiy2

xk + eix2
yk − eix1

yk + eix1e
i
y2
− eix2

eiy1 (7.24)

is the sum of products distributed by the modified Bessel function of the second kind.

Fortunately due to the large number of terms and the central limit theorem, the

expression is characterized well by a Gaussian distribution.

From probability theory, the expected value and variance of the product of uncor-

related, univariate Gaussians x ∼ N (µx, σ
2
x) and y ∼ N (µy, σ

2
y) is,

E [xy] = µxµy (7.25)

var (xy) = µxσ
2
y + µyσ

2
x + σ2

xσ
2
y . (7.26)

The mean of Eqn. (7.24) is easily characterized by:

E [cik] = ēiy1x̄k − ēiy2
x̄k + ēix2

ȳk − ēix1
ȳk + ēix1

ēiy2
− ēix2ē

i
y1
, (7.27)

but the variance is more difficult to evaluate. Combining all the terms and simplifying

yields,

var (cik) = α1σ
2
xk

+ α2σ
2
yk

+ α3σ
2
xkyk

+ α4︸ ︷︷ ︸
α0

+α5x̄
2
k + α6x̄k + α7ȳ

2
k + α8ȳk (7.28)
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where

α1 = (ēiy1
)2 + σ2

eiy1
+ (ēiy2

)2 + σ2
eiy2
− 2ēiy1

ēiy2
,

α2 = (ēix1
)2 + σ2

eix1

+ (ēix2
)2 + σ2

eix2

− 2ēix1
ēix2
,

α3 = 2ēiy1
ēix2
− 2ēiy1ē

i
x1
− 2ēiy2

ēix2
+ 2ēiy2

ēix1
,

α4 = (ēix1
)2σ2

eiy2
+ (ēiy2)2σ2

eix1

+ σ2
eiy2
σ2
eix1

+ (ēix2
)2σ2

eiy1
+ (ēiy1

)2σ2
eix2

+ σ2
eiy1
σ2
eix2

,

α5 = σ2
eiy1

+ σ2
eiy2
,

α6 = ēix2
σ2
eiy1

+ ēix1
σ2
eiy2
,

α7 = σ2
eix1

+ σ2
eix2

,

α8 = ēiy2
σ2
eix1

+ ēiy1
σ2
eix2

.

The variance in Eqn. (7.28) can be separated into two parts: term α0 which can

be computed a priori, and a set of terms that depend upon the system state and

consequently the control inputs. The final form of the variance is,

var(cik) = α5x̄
2
k + α6x̄k + α7ȳ

2
k + α8ȳk + α0. (7.29)

7.3.3 Uncertain Constraint Parameter Examples

In the following examples, the three proposed solution methods (Boole’s, CVaR,

and hybrid) are used to plan trajectories through two sample environments. Both

environments contain nonconvex regions which can be transformed into a series of

convex problems as in [86], [87]. The approach taken in the following examples was

to decompose the feasible region into convex tunnels which are then planned through.

Example 8. The following example is similar to Example 4 except for a Qobj = 50I

and δ = 0.005. Here δ was decreased to highlight the differences between the proposed

methods.
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The parameters for the points of the environment are,

e1 = [−0.15,−0.15], Σe1 = diag(0.001, 0.0001),

e2 = [−0.15, 2.75], Σe2 = diag(0.001, 0.01),

e3 = [2.2, 2.75], Σe3 = diag(0.001, 0.012),

e4 = [2.2, 0.75], Σe4 = diag(0.0002, 0.0002),

e5 = [1.75, 0.75], Σe5 = diag(0.0002, 0.0002),

e6 = [1.75,−0.15], Σe6 = diag(0.0001, 0.0001),

e7 = [0.15, 0.15], Σe7 = diag(0.0001, 0.0001),

e8 = [0.15, 2], Σe8 = diag(0.0001, 0.0001),

e9 = [1.4, 2], Σe9 = diag(0.0001, 0.0001),

e10 = [1.4, 0.15], Σe10 = diag(0.0001, 0.0001).

(7.30)

The solution for Example 8 is shown in Figure 7.3(a)-(c) for Boole’s method,

the CVaR method, and the hybrid method, respectively. The blue, solid line is the

trajectory of the system when accounting for the uncertainty of the environment,

and the green, dotted line is the solution when planning only through the mean

environment. The blue ellipses show the 99.7% confidence ellipsoid of the system

state at each time-step. For this example, the optimal path is always through the top

region, even though the bottom region is shorter. The bottom region is infeasible with

respect to the chosen allowed constraint violation because of the large uncertainty of

the vertical position of the state.

There are several interesting differences between the solution that account for the

uncertainty and the solution through the mean environment. The solution from the

mean environment initially curves toward the wall with large uncertainty, but when

the uncertainty of the environment is incorporated the system deviates away from

it. The more noticeable difference between the two solutions in the top region of the

environment. The solution which accounts for the uncertainty of the environment

stays lower to avoid the highly uncertain top wall.

The approximate solution using Boole’s method takes 61.2 seconds to compute,

the CVaR method uses 1500 particles and takes 286.1 seconds to solve, and the hybrid
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approach uses only 50 particles for the environment and takes 2.42 seconds. Clearly,

using the hybrid approach would enable stochastic control in real-time applications,

whereas the other two approaches could only be used for offline calculations. The

estimated true probability of constraint violation using Monte Carlo simulation for

Boole’s method, the CVaR method, and the hybrid method is 0.0038, 0.0047, and

0.0042. The CVaR method results in the least conservative solution and the approxi-

mate solution using Boole’s method has the most conservative solution. Even though

the hybrid method yields a more conservative solution over the CVaR approach, this

is outweighed by the significant reduction in computation time.

Table 7.1 shows the simulated constraint violation for δ = 0.01 and δ = 0.005

when planning with and without the uncertainty of the environment using Boole’s

method. The solution which only uses the mean environment significantly violates the

allowed constraint violation, while the solution which accounts for the uncertainty of

the environment is conservative due to the approximation from Boole’s inequality. In

particular, Boole’s inequality doesn’t account for the dependence between the state

at different time-steps violating the constraints. Consider a wall whose uncertainty

is purely translational. If at one time-step the system doesn’t violate the constraint,

then the system will also not violate the constraint for any future motion parallel to

the wall. Using Boole’s inequality to bound the probability ignores this dependency.

The conservativeness can be reduced, at the expense of more computation, by using

one of Bonferroni’s inequalities [95].

Table 7.1: A comparison of the constraint violation for Boole’s method using different
environmental models.

Sol. Method δ δsim
Mean Env. 0.005 0.0123

Env. Uncertainty 0.005 0.0038
Mean Env. 0.01 0.017

Env. Uncertainty 0.01 0.0088

Table 7.2 compares the statistics of the probability of constraint violation using

the CVaR method with various numbers of particles. The statistics were calculated

using 100 runs and an allowed probability of constraint violation of δ = 0.005. For
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Figure 7.3: Results for Example 8 with ten realizations of the uncertain walls. The
white area is the feasible region of the system state and the orange ellipses are the
uncertainty of the environment. The blue, solid line is the solution when accounting
for the uncertainty of the environment and the green, dotted line plans through the
mean environment. The blue ellipses around the path indicate the uncertainty of the
system. The start and goal location are marked by an ‘o’ and ‘x’, respectively. (a)
The approximate solution using Boole’s method. (b) The solution using the CVaR
method with 1500 particles and their trajectories are shown as the gray lines. (c) The
solution using the hybrid method with Ns = 50 samples.
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the smallest number of particles, the CVaR method on average violates the allowed

violation probability by 2.5 times. With 1500 particles, on average the constraint

violation is below the user allowed amount, but the maximum is twice the allowed

amount.

Table 7.2: A comparison of the solution statistics for the CVaR algorithm for various
number of particles for the uncertain constraint parameter problem. δ = 0.005.

Ns mean δsim std. dev. δsim max δsim
500 0.0127 0.0050 0.027
1000 0.0070 0.0026 0.014
1500 0.0048 0.0017 0.010

A comparison of the solution statistics for the hybrid method is shown in Table 7.3

for an example with δ = 0.005. Even for a very small number of particles, Ns = 25,

the mean probability of constraint violation is equal to the allowed amount. As the

number of particles increases, the standard deviation and maximum probability of

constraint violation decreases while the conservativeness of the solution increases.

Table 7.3: A comparison of the solution statistics for the hybrid method for various
number of particles for the uncertain constraint parameter problem.

Ns mean δsim std. dev. δsim max δsim mean comp. time (secs)
10 0.0058 0.0014 0.0098 0.95
25 0.0050 0.0010 0.0078 1.48
50 0.0046 0.0009 0.0075 2.42
100 0.0045 0.0007 0.0062 4.56
200 0.0044 0.0006 0.0063 6.53
300 0.0043 0.0005 0.0054 9.11
400 0.0041 0.0005 0.0053 11.18
500 0.0042 0.0004 0.0051 14.63

Example 9. The following example is similar to Example 8 except the environment

is larger and the noise parameters are changed to,

Σw = diag(0.001, 0.001, 0.001, 0.001)

Σv = diag(0.002, 0.002).
(7.31)
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For this example, the solution is shown in Figure 7.4. The solution which ac-

counts for the uncertainty of the environment is shown as the blue, solid line and

has a planning horizon of N = 55. The green, dotted line plans through the mean

environment and uses a shorter horizon of N = 35 due to the shorter route. This

mean environment solution has a simulated constraint violation of 0.0084, 68% over

the allowed violation. When accounting for the uncertainty of the environment, the

system cannot take the direct path as the mean environment solution can because

the walls in that corridor have too much uncertainty (resulting in a violation of the

probability constraint).

The solutions from Boole’s method and the hybrid method are shown in Fig-

ure 7.4(a)(b), respectively. The violation probability is 0.0038 for Boole’s method

and 0.0050 for the hybrid method with only 100 particles. The solution using Boole’s

method is over 13 times slower than the hybrid method.

7.4 Conclusions

This chapter extended the stochastic control framework to handle uncertain con-

straint parameters. Three different methods were proposed to handle the resulting

joint chance constraints. In the first method, the probability distribution was accu-

rately approximated by a Gaussian distribution with an analytic mean and covari-

ance. Unfortunately, the resulting optimization program was nonconvex increasing

the computation times and only guaranteeing a locally optimal solution. Inherently,

the CVaR method can handle the increased complexity of the uncertain constraint

parameters through sampling. Even though the method easily handles the evalua-

tion and satisfaction of the joint chance constraints, the computational complexity of

this approach limits its applicability. In this chapter, a novel hybrid approach was

proposed that uses both analytical functions and sampling to represent the uncer-

tainty. This method was shown to be superior to the individual CVaR and Boole’s

method approaches. The hybrid approach resulted in a convex optimization program

under certain conditions, guaranteeing the optimal solution. It also decreased the
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Figure 7.4: The solution for the uncertain constraint parameter for Example 9. (a)
The solution using the approximate approach with Boole’s method. (b) The hybrid
approach with Ns = 100 particles for the environment.
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conservativeness of the solution over the approximation method. As compared to the

CVaR method, typically fewer samples were needed which reduced the computational

complexity and could thus enable real-time operation.



Chapter 8

A Hierarchical Method for

Stochastic Control with Uncertain

Constraint Parameters

In the previous chapter, a stochastic control problem was formulated for handling

uncertain constraints. In this chapter, the problem formulation is further extended

to incorporate new possible measurements of the uncertain constraint parameters,

leading to increased performance of the overall system. This problem is the standard

dual control problem with the following two competing objectives,

• Action: To control the system based on the current belief of the state to achieve

a desired goal;

• Probing: To explore with the system to acquire more information about its

state to enable better control.

Consequently, the system must trade off between completing its objective and explor-

ing to gain more information to better complete its objective.

One way to solve this problem is to calculate a policy for the entire belief space

(the space of probability distributions of all possible system states) that determines

the best action for every possible future belief state that it may encounter. This

requires the system to maintain a probability distribution over all possible system

123
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states and constraint parameters. In general, this formulation is intractable due to

its large computational complexity arising from the necessity of planning over long

time horizons and the dimension of the belief space.

In this chapter, a novel hierarchical method is proposed to reduce the computa-

tional complexity by splitting the problem into two stages: (1) exploration and (2)

execution. In the exploration phase, the dynamics of the system are abstracted in

order to simplify the problem and a high level control policy is calculated that incor-

porates information from potential new measurements. In the next phase, the system

executes the high level control policy by solving a stochastic control problem given

the current information of the system state and constraint parameter values. As the

system evolves, it continuously incorporates sensor information into its belief of the

state and re-solves both stages. An experimental demonstration of the proposed hier-

archical method applied to stochastic motion planning for a quadrotor aerial vehicle

in a dynamic, uncertain environment is presented in the following chapter.

8.1 Motivating Example for Dual Control

The following example motivates the need for incorporating sensing of the uncertain

environment into the stochastic control solution.

Example 10. The following example is similar to Example 8 except for N = 65

and δ = 0.05. Here the δ was chosen to highlight the need to incorporate constraint

sensing.

The solution without incorporating constraint sensing is shown in Figure 8.1.

Here, the system must take the longer route around the top of the obstacle because

the bottom route violates the chance constraints due to the large environmental un-

certainty in the second corridor. This results in a path length of 2 times larger than

if the system was able to take the bottom route through the environment.

For this example, the system is forced to take the longer path because environ-

mental sensing is not taken into account. In this case, it might have been beneficial
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for the system to gain information by exploring the environment to improve the so-

lution of its task. For instance, the shorter path might have been enabled through

sensing the walls in the environment while executing its trajectory. The proposed

hierarchical framework developed in the following section systematically trades off

between exploring to gain information and accomplishing the task while ensuring the

chance constraints. This new framework will be applied to this example at the end

of the chapter.
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Figure 8.1: The white area is the feasible region of the system state and the orange
ellipses are the uncertainty of the environment. The blue, solid line is the solution
when accounting for the uncertainty of the environment. The blue ellipses around the
path indicate the uncertainty of the system. The start and goal location are marked
by an ‘o’ and ‘x’, respectively.

8.2 Hierarchical Method

A general principled way of modeling the problem of stochastic motion planning

through uncertain environments is by using Partially Observable Markov Decision

Processes (POMDPs). A POMDP models a system’s decision process in which the
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system’s dynamics are not necessarily deterministic, but rather the outcome of its

actions could be stochastic, and the system does not know the true underlying state.

Instead, the system must take measurements of the underlying state and maintain a

probability distribution over all possible states. In order to solve a POMDP, a policy

must be calculated for the entire belief space that determines the best action for every

possible future belief state that it may encounter.

The main difficulty in solving a POMDP is its large computational complexity,

and in general solving a POMDP exactly is intractable. The two main causes of the

large computational complexity is the curse of dimensionality and the long planning

horizons. The first difficulty arises from the need to represent the probability distri-

bution over all possible states in order to incorporate all possible future events. For

the specific problem of stochastic motion planning through uncertain environments,

the belief state would be all possible system states as well as all possible realiza-

tions of the uncertain environment. The second difficulty is due to the need to use

long planning horizons to incorporate information gain resulting in good, non-myopic

policies.

In order to overcome the high computational complexity of solving the POMDP

formulation of the problem, the problem is broken down into two phases: (i) an

expected shortest path problem on an uncertain graph and (ii) a chance constrained

optimization problem. By decomposing the problem in this way, the size of the

belief space is drastically reduced by planning only where it is best to observe the

environment. This in turn greatly reduces the computational complexity. The method

is shown in Algorithm 4.

The first step of the algorithm decomposes the environment into a set of nodes and

edges as shown in Figure 8.2. Then the probability that the link will be traversable

after sensing is calculated. After this graph is built, the expected shortest path

problem is solved to provide a high level plan for the chance constrained stochastic

motion planning algorithm presented in Section 7.2.3. Then the system executes

the plan and senses the environment to update the probability distribution of the

environment. This procedure repeats until the system completes its objective. The

individual steps of the algorithm are described in more detail below.
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Algorithm 4 Hierarchical Stochastic Motion Planning Algorithm

1: while objective not complete do
2: Decompose the environment into a graph of nodes and edges
3: Calculate the probabilities of the edges being traversable after sensing
4: Solve the expected shortest path problem
5: Solve the chance constrained stochastic motion planning problem
6: Execute the plan
7: Sense the environment
8: end while

8.2.1 Environmental Decomposition

The first step in using the hierarchical stochastic motion planning algorithm is to de-

compose the environment into a graph. One approach to perform this decomposition

is to use a weighted medial axis decomposition [96] based upon the uncertainty of

the environment. Another approach would be to build a graph based upon motion

primitives. Care should be taken to provide a decomposition of the environment that

is as dynamically feasible as possible to ensure that the system can execute the high

level plan, and that the cost of traversing the edges is as accurate as possible. Once

the graph has been constructed, the probability that each link is traversable needs to

be calculated. In order to account for new environmental information, the probability

associated with each link is the a posterior probability, rather than the a priori, as

this allows the system to determine whether there is information to be gained by

exploring a certain area.

To simplify the discussion, the environmental uncertainty is assumed to only be

in the parameter b. The probability of collision before sensing for a single constraint

(i.e. HTX ∈ R and b ∈ R) is calculated via

P
(
HTX > b

)
=

∫ ∫
1
(
HTX > b

)
P(b)P(X)dbdX. (8.1)

However, the statistic needed for each link in the expected shortest path problem is the

probability that after sensing the link will be traversable. In order to calculate this,

an allowed probability of collision (ε) for the constraint needs to be allocated which

will be discussed in the following section. Once the allowed probability of collision
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Figure 8.2: A graph based decomposition of the environment. The dotted link has a
large probability of failure before sensing but after sensing it has a large probability
of being traversable.

for the constraint has been determined, the probability the link will be traversable

after sensing is calculated via

P
(
P
(
HTX > b|H, b

)
≤ ε
)
, (8.2)

where ε is the allowed probability of constraint violation associated with the con-

straint. For the current derivation with uncertainty only in the parameter b, Eqn. (8.2)

can be simplified further to

P
(
P
(
HTX > b|b

)
≤ ε
)

=

∫
1
(
P
(
HTX > b|b

)
≤ ε
)

P(b)db. (8.3)

If b∗ can be found such that

P
(
HTX > b|b

)
≤ ε, b ≥ b∗

P
(
HTX > b|b

)
> ε, b < b∗
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then the probability in Eqn. (8.3) can be simplified to

P
(
P
(
HTX > b|b

)
≤ ε
)

=

∫ ∞
b∗

P(b)db. (8.4)

For a given link, if there is more than one constraint, then a similar methodology can

be used to determine an analytic formula for the probability.

If both parameters H and b are uncertain, the complexity of calculating the re-

quired probability increases because it requires evaluating multivariate integrals, how-

ever, numerical integration through Monte Carlo sampling can be used to efficiently

evaluate it.

Consider now how this new formulation would effect the results in the previous

example shown in Figure 8.1. The probability of failure for traversing the dotted

link in Figure 8.2 before sensing is 0.15, but the probability that the link will be

traversable after sensing is 0.64 for an allowed probability of failure of ε = 0.02. The

large probability of failure before sensing requires the system to take the long route

around the obstacle in Figure 8.1. However, the large probability that the link will

be traversable after sensing suggests that it might be beneficial to first investigate

whether or not the corridor is traversable and then either proceed directly to the goal

or backtrack around the top of the obstacle.

The best strategy for navigating the environment can be calculated by solving the

expected shortest path problem through the defined uncertain graph, however the

strategy is highly impacted by the risk assigned to each edge. The following section

discusses a method for allocating these risks through convex optimization.

8.2.2 Risk Allocation for the Graph Decomposition

To calculate the probability of failure after sensing, the allowed risk for each link

needs to be known. The allowed risks have a direct impact on the routes generated

by the expected shortest path algorithm. If the allowed risk is improperly assigned,

then it may cause certain paths that should be explored to be overlooked. Therefore

it is necessary to carefully allocate the risk in order to correctly trade off between

exploration and execution in the expected shortest path calculation. The method
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presented below is a heuristic based upon solving a convex approximation of the

original problem.

An example environment decomposition is given by the undirected graph in Fig-

ure 8.3. Here, pij is the probability after sensing that the edge between node i and j

will be passable and is defined as pij = fij(εij), with fij(εij) given by Eqn. (8.2). Let

eij be the edge between node i and j. For any path through the graph, there is a set

of edges {e(1), . . . , e(n)} with associated probabilities {p(1), . . . , p(n)} and probability

functions {f (1)(ε(1)), . . . , f (n)(ε(n))}.
In general the probability functions fij are positive, nondecreasing functions of

the allowed risk, but they are neither convex nor concave for the entire domain. One

example of the probability function versus the allowed risk is shown in Figure 8.4;

for this example the function is log-concave. For cases where the function is not log-

concave, a convex approximation of the problem will be obtained by approximating

the probability functions with log-concave functions f̂ij. In the following discussion,

this modified problem formulation will be used to allocate the risk.

1 2 6 7

3
4

5

p12

p15

p31

p34

p32

p45

p26 p67

p56 p57

Figure 8.3: An example graph used in the calculation of the expected shortest path.

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

ε
ij

p ij

Figure 8.4: An example of the probability of the link being traversable after sensing
versus the allowed risk.



CHAPTER 8. DUAL CONTROL 131

One method of assigning the risk for each edge is by maximizing the probability

the path will be passable. The a priori probability that after sensing the path between

any two nodes will be passable is the product of the probabilities for each edge that

is traveled, i.e.
∏n

m=1 p
(m). This assignment of risk can be obtained by solving the

following optimization program.

maximize
∏n

m=1 f
(m)(ε(m))

subject to

ε(m) ≥ 0, m = 1, . . . , n∑n
m=1 ε

(m) ≤ δ, m = 1, . . . , n

(8.5)

The optimization program maximizes the probability of success subject to the con-

straint that the sum of the assigned risk over the path is smaller than the user allowed

amount. Unfortunately, this program is not necessarily convex because the objective

function is not guaranteed to be concave. To form a convex approximation, the orig-

inal probability functions can be replaced by their concave approximations, but this

still doesn’t guarantee convexity. To form a convex optimization program, a set of

slack variables are introduced based upon the logarithm of the approximate proba-

bility functions and the objective function is replaced by its logarithm. This results

in the following equivalent convex optimization program.

maximize
∑n

m=1 αm

subject to

ε(m) ≥ 0, m = 1, . . . , n∑n
m=1 ε

(m) ≤ δ

αm ≤ log
(
f̂ (m)(ε(m))

)
, m = 1, . . . , n

(8.6)

In order for this new optimization program to be convex, the objective function

needs to be concave and the constraints have to be convex. The objective function

is a sum of linear variables which is concave and convex. The first two constraints

are linear, and the last constraint is convex since it is a linear expression less than a

concave function because the functions f̂ (i) are log-concave. Given the convexity of
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the optimization program, it provides an efficient method for allocating the risk for

a large number of links.

In this formulation, the optimization program will need to be solved for all paths

without cycles between the start and goal location, and it may assign a different

allowed risk for each link depending on the path. To obtain a risk assignment for all

edges that is independent of the path, the problem formulation can be changed to a

single optimization program that maximizes the probability of successfully traveling

over all paths subject to the same constraints for all paths.

Using the risk allocation computed from the above formulation, the expected

shortest path problem is solved next in order to determine the trade off between

exploring to gain more information and completing the objective of the planning

process.

8.2.3 Expected Shortest Path

The expected shortest path problem on an uncertain graph has been extensively

studied. The approach taken in this work is to convert the problem into a Markov

Decision Process (MDP) [97]. A MDP is represented by a 4-tuple (S,A, P (·), R(·))
where

• S is the set of states

• A is the set of actions that can be taken at each state

• Pa(s, s′) is the probability that executing action a in state s will lead to state s′

• Ra(s, s
′) is the reward function.

Let the graph associated with Figure 8.2 be represented by G with the edges noted

as E(G), the vertices as V (G), the probability associated with each edge in the graph,

e ∈ E(G), be represented as P(e), and the start and end vertices of edge e be es and

ee, respectively.

To define the expected shortest path problem on a graph as a MDP, the 4-tuple

needs to be defined. For the stochastic motion planning problem, a state, s, includes



CHAPTER 8. DUAL CONTROL 133

both the current location of the system as well as its belief of the current state of the

environment, i.e. the probabilities associated with all the links in the graph being

traversable. The set of all possible states is therefore

S = V (G)×
∏

e∈E(G)

{0, 1,P(e)}. (8.7)

The set of actions is defined as traversing over any edge in the graph, i.e. A = E(G).

Next, the transition probability function needs to be defined which must take into

account the information gain from executing actions in the uncertain environment.

For example, if the system attempts to take edge e, then with probability P(e) it

will reach ee and with probability 1 − P(e) it will remain at es. After taking edge

e the probability distribution over the environment will have changed; if the system

successfully crosses the edge then P(e) = 1, but if the system remains at es then

the edge is not traversable and the probability updates to P(e) = 0. The transition

function can be defined as

Pa(s, s
′) =



P(a)

if sp ∈ a,
s′p ∈ a,
sp 6= s′

s′(a) = 1;

1− P(a)

if sp = s′p

sp ∈ a,
s′(a) = 0;

0 otherwise

(8.8)

where an action a is an associated edge e, s(a) is the probability of the action a being

traversable in state s, and sp is the location of the system in state s. Lastly, the

reward function for the problem is,

Ra(s, s
′) =

{
γ if s = g

c(s, s′) otherwise
(8.9)



CHAPTER 8. DUAL CONTROL 134

where g is the goal location of the planning problem, γ ∈ R+ is the reward of reaching

the goal location, and c(s, s′) ∈ R is the cost of traveling between state s and s′. The

cost function c(·) should include any potential costs, such as energy consumption or

path length, that the system would encounter for attempting to navigate that route.

There are many different solution methodologies to solve for the exact solution of

a MDP, such as value or policy iteration. However, the formulation of the expected

shortest path problem as a MDP has an exponential growth of states with respect

to the number of uncertain edges in the graph. Since each uncertain edge can have

three values associated with it, {0, 1,P(e)}, the number of states in the graph could

be as large as |V (G)| · 3|E(G)|. This exponential growth of the number of states will

prohibit solving for the exact solution for large sized problems. Fortunately, there are

many approximate MDP solvers [98] that can handle large size problems and provide

near optimal solutions for the exploration phase of the algorithm.

8.2.4 Execution of Expected Shortest Path Solution

Once the expected shortest path problem has been solved to determine the route

the system should take, the standard stochastic motion planning problem can be

formulated and solved as shown in Chapter 7. Since parts of the uncertain environ-

ment are too risky to pass through before sensing, the stochastic motion planning

algorithm only navigates the system to intermediate waypoints in the environment.

These intermediate waypoints act as decision points for the system to gather more

information about the environment to determine if the environment is safe to pass

through. As the system is navigating to the intermediate waypoint, it continually

senses the environment, updates its probability distribution, determines the next in-

termediate waypoint from the expected shortest path plan, and then solves another

stochastic motion planning problem to reach the next intermediate waypoint.
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8.3 Example using Hierarchical Dual Control

Method

Example 10 is solved through the proposed hierarchical stochastic motion planning

algorithm and the solution is shown in Figure 8.5. The hybrid method in Section 7.2.3

is used to solve the chance constrained stochastic motion planning algorithm, but any

of the other methods could have been used. After solving the expected shortest path

problem, the best path for the system to take is around the bottom of the obstacle,

even though the probability of failure in the second corridor before sensing violates

the constraints. Consequently, the system only executes a subset of the plan to the

decision point as shown in Figure 8.5(a). After it reaches this waypoint, it senses

the environment and updates the probability distribution of the environment, and

determines that for this environment the corridor is passable. Consequently, it solves

another chance constrained stochastic motion planning problem to proceed directly

to the intended goal location as shown in Figure 8.5(b). However, if after sensing the

environment the system determined that the corridor was indeed impassable then it

would have backtracked and proceeded around the top of the obstacle as displayed in

Figure 8.5(c).

8.4 Conclusions

This chapter extended the stochastic control framework to incorporate new infor-

mation gain from sensing the uncertain constraint parameters to increase the per-

formance of the system. To accomplish this, the system must trade-off between

completing its objective and exploring to gain more information to better control the

system. In general, the problem is intractable due to its large computational complex-

ity arising from the necessity of planning over long time horizons and the dimension

of the belief space.

A novel hierarchical method was developed that reduced the computational com-

plexity. It accomplished this by splitting the problem into two stages: (i) an ex-

ploration phase that uses an abstraction of the dynamics to calculate the high level
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Figure 8.5: The solution from the hierarchical stochastic motion planning algorithm
for Example 10. (a) The expected shortest path algorithm determined the best strat-
egy for this environment was to attempt to take the shortest path to the goal location
to be able to sense the environment to determine if the route was feasible. (b) After
the measurements of the environment have been incorporated into the model of the
environment, the system replans the path which results in being able to take the
shortest path to the goal location. (c) The stochastic motion planning solution from
the sensing point for another realization of the environment. After sensing the envi-
ronment, the probability of failure is too large which requires the system to backtrack
and take the long route around the top of the obstacle.
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policy that incorporates information from potential new measurements, (ii) an execu-

tion phase that solves a stochastic control problem to follow the high level plan given

the current information of the belief space.

The following chapter presents an experimental demonstration of the hierarchical

method for a quadrotor navigating through an uncertain 3D environment.



Chapter 9

Experimental Demonstration

The hierarchical stochastic motion planning algorithm presented in the previous chap-

ter was evaluated on a quadrotor unmanned aerial vehicle pictured in Figure 9.1. The

vehicle has an onboard inertial measurement unit which provides three-axis attitude,

attitude rate and acceleration measurements. An external Vicon positioning system

is also used to provide measurements of the quadrotor’s position with respect to a

global coordinate frame. To sense the environment, the quadrotor is equipped with a

Kinect sensor that provides a dense 3D point cloud measurement of the environment.

Figure 9.1: An image of the Ascending Technologies pelican quadrotor with the
attached Kinect sensor.

138
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9.1 Quadrotor Dynamics

A high level illustration of how the quadrotor controls its dynamics is shown in Fig-

ure 9.2. Mechanically, the quadrotor is much simpler than a traditional helicopter; its

blades are fixed pitch, which means that the thrust from each motor is constrained

to the vertical axis of the motor. The quadrotor has four rotors consisting of two

counter-rotating pairs, which helps to cancel the yaw torque. To increase or decrease

the total thrust, the speed of all four rotors are either increased or decreased (which

maintains the quadrotor at its current attitude). To change the roll or pitch of the

quadrotor, the speed of one rotor is increased while the corresponding rotor is de-

creased; this keeps the yaw torque and total thrust constant. To affect the yaw of the

quadrotor, the speed of one pair of rotors is increased and the other pair is decreased

to keep the total thrust constant. Lateral acceleration can be achieved by varying the

roll and/or pitch of the quadrotor.

Figure 9.2: An illustration of how the controls affect the quadrotor’s dynamics.

The dynamics of the quadrotor are nonlinear, and for simplicity, the aerodynamic

effects caused by the changing airflow will be ignored. A free body diagram of the

quadrotor is shown in Figure 9.3. The body frame of the quadrotor is attached to

the center of mass. The following rotation matrix is used to convert from the body
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Figure 9.3: A free body diagram for the quadrotor unmanned vehicle.

frame to the world frame

R =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

 , (9.1)

where cθ and sθ are cos(θ) and sin(θ), and φ, θ and ψ are the roll, pitch and yaw

Euler angles. From the standard rigid body equations of motion, the translational

dynamics of the quadrotor are given by:

mr̈ =


0

0

−mg

+R


0

0∑4
i=1 Fi

 , (9.2)

where g is the acceleration of gravity, m is the mass of the quadrotor, and Fi is the

force that each motor generates. A similar procedure can be followed for analyzing

the rotational dynamics. The angular acceleration in the body frame p, q, r can be

determined by applying the standard Euler equations

I


ṗ

q̇

ṙ

 =


l(F2 − F4)

l(F3 − F4)

M1 −M2 +M3 −M4

−

p

q

r

× I

p

q

r

 (9.3)
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where I = diag(Ixx, Iyy, Izz) is the inertia matrix for the quadrotor, l is the length of

each rotor arm, and Mi is the torque generated by each motor.

Combining common terms of Eqn. (9.3) yields
Ixxṗ

Iyy q̇

Izz ṙ

 =


l(F2 − F4)− qr(Izz − Iyy)
l(F3 − F4)− pr(Ixx − Izz)
M1 −M2 +M3 −M4

 . (9.4)

Typically, the quadrotor operates around a nominal hover condition with small

attitude angles (±20o), and under these conditions the dynamics are represented well

by a linearized system. Without loss of generality, assume the yaw angle is held

constant at 0 radians. Assuming small angles for roll and pitch and dropping higher

order terms, the nonlinear translational dynamics simplify to

m


ẍ

ÿ

z̈

 =


θ
∑4

i=1 Fi

−φ
∑4

i=1 Fi

−mg +
∑4

i=1 Fi

 , (9.5)

verifying that for small angles the translational acceleration is linear in the attitude

of the quadrotor.

In typical operating conditions, the yaw velocity, r, is small, and near nominal

hovering conditions φ̇ = p, θ̇ = q,ψ̇ = r. Consequently, after dropping higher order

terms, the linearized rotational dynamics simplify to
Ixxφ̈

Iyyθ̈

Izzψ̈

 =


l(F2 − F4)

l(F3 − F4)

M1 −M2 +M3 −M4

 , (9.6)

which is linear in the rotor forces which are proportional to the speed of the rotors.

This also validates the use of a linear model around the nominal hover condition of

the quadrotor dynamics.
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9.2 Ascending Technologies Pelican Quadrotor Dy-

namics

Direct control of the rotor speeds is not possible for the Ascending Technologies

quadrotor, however a low level controller is provided that accepts desired roll, pitch,

and yaw angles as input. Consequently, the transfer functions from desired attitude

angles to attitude and translational dynamics had to be determined through standard

system identification techniques [99]. The quadrotor state and control input are

xk =
[
x y z vx vy vz θ φ vθ vφ

]T

, uk =
[
φd θd uz

]T

. (9.7)

The dynamics are discretized with a time-step of ∆t = 0.1 seconds and the linear

system is

xk+1 = Axk +Buk + wk, (9.8)

where

A =

[
Ap Apa

0 Aa

]
, (9.9)

with

Ap =



1 0 0 0.10 0 0

0 1 0 0 0.10 0

0 0 1 0 0 0.10

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (9.10)

Apa =



0.05 0 0 0

0 0.05 0 0

0 0 0 0

0.98 0 0 0

0 0.98 0 0

0 0 0 0


Aa =


0.23 0 0.06 0

0 0.23 0 0.06

−4.81 0 0.71 0

0 −4.81 0 0.71

 , (9.11)
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B =


0 0 0 0 0 0 0.15 0 3.57 0

0 0 0 0 0 0 0 0.15 0 3.57

0 0 0.005 0 0 0.10 0 0 0 0


T

. (9.12)

9.3 Stochastic Motion Planning Algorithm

The procedure for planning safe trajectories for the quadrotor through general en-

vironments is described in Algorithm 5. It is assumed that an initial map of the

environment is given. With this map, the world is discretized into cells, with each

cell storing the distance to the closest obstacle. Given the current start and goal lo-

cation, the expected shortest path problem is solved to determine the high level plan

of how the quadrotor should attempt to reach the goal location. This step trades-off

the cost and benefit of exploring riskier, shorter paths. Once the intermediate goal

location is determined, the method described in [100] is used to determine a safe

pre-path through the environment as input for the chance constrained optimization

algorithm. The pre-path method forms a network of free space bubbles from the

discretized grid and uses A∗ to find the shortest safe path to the intermediate goal

location. An example of the pre-path method is shown in Figure 9.4. The start and

goal locations are the green and red spheres, respectively. The shortest path is the

red line with the network of free space bubbles shown as the blue transparent spheres.

The environment around this pre-path is decomposed into a set of convex polytopes.

Using the resulting tunnel, the chance constrained optimization program is solved

for the trajectory that satisfies the allowed probability of collision constraints. Fi-

nally, the quadrotor executes this trajectory, continuously sensing the environment

and updating its model of the world.

The point cloud library [101] is used to process the Kinect point cloud data, and

the Kinect sensor is operating at 30 Hz. The environment is represented as a set of

3D points corresponding to obstacles. For every frame of the Kinect sensor, points

are added to the environment if it sees a new obstacle or removed if an obstacle

is no longer there. If at any point the quadrotor determines that the high level

route determined from the expected shortest path problem will violate the allowed
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Figure 9.4: An illustration of the pre-path method planning with the network of
bubbles around the shortest path. The start is the green sphere, the goal is the red
sphere, and the transparent spheres is the network of free space bubbles around the
shortest path.

probability of collision, it will re-iterate through Algorithm 5.

Algorithm 5 Stochastic Motion Planning Algorithm

1: Discretize the world
2: For each grid cell determine the closest obstacle
3: Solve the expected shortest path problem to determine the intermediate goal

location
4: Perform A∗ search from the start to the goal to determine a safe pre-path
5: Generate a tunnel of convex polytopes around the pre-path
6: Solve the stochastic motion planning problem
7: Execute the trajectory, continuously sensing and updating the world model

9.4 Results

The hierarchical stochastic motion planning algorithm presented in Chapters 8 and 9

was solved in real-time on the quadrotor testbed. The experimental environment is
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shown in Figure 9.5. The room has a size of 7.6m × 7.1m × 2m, and is cluttered

with desks, chairs, boxes, saw horses, and cabinets that force the quadrotor to use

the entire 3-dimensional volume in successfully reaching its goal.

In this example there are two sources of environment uncertainty: (i) the obstacle

locations are not known exactly due to the sensing error of the Kinect sensor, and

(ii) the cabinet that is outlined with the orange dotted line in Figure 9.5 has a 0.3

probability of its door being open. If the door is open, the quadrotor is prevented

from taking the shortest path to the goal location. The error from the Kinect sensor

can be directly incorporated into the chance constrained stochastic motion planning

algorithm by including it in the probability distribution of the uncertain environment.

The uncertainty of the door will be incorporated into the probability of the link

through the corresponding corridor.

For planning purposes, the dynamics are discretized with a time-step of ∆t = 0.1

seconds and the resulting plan is sub-sampled to be executed at 20 Hz. An initial

map of the environment with the door closed was constructed by manually flying the

quadrotor around.

The proposed hierarchical motion planning algorithm was then solved in real-

time with the door open. The results are shown in Figure 9.6 (each point represents

a part of the environment and is color coded based upon the height off the floor).

The solution from the expected shortest path problem instructed the quadrotor to

first determine if the cabinet door was open, then either proceed directly to the goal

location or backtrack through the middle corridor. As the quadrotor was executing

the motion plan, it sensed that the cabinet door was open, and re-solved the stochastic

planning problem. Figure 9.6 shows the planned trajectory and executed trajectory

as the orange and blue lines, respectively.
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Goal
Cabinet Door

Figure 9.5: An image of the stochastic environment. The start position is out of view
on the bottom lefthand corner of the image and the goal location is marked by the
red circle which is behind the large cabinet. The cabinet on the right of the image
marked by the orange dotted rectangle is stochastic, as the door could either be open
or closed which might prevent the robot from passing through that corridor.
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Figure 9.6: The final point cloud representation of the environment. The start loca-
tion is the green sphere in the lower lefthand corner and the goal location is the red
sphere in the upper lefthand corner. The points correspond to obstacle locations and
are color coded based upon the height off the floor. The planned trajectory is shown
as the orange line through the environment and the trajectory of the quadrotor is
shown as the blue line.



Chapter 10

Conclusions and Future Research

Directions

This thesis presented stochastic control methods to enable robust operation of au-

tonomous systems under uncertainty. This chapter briefly reviews the contributions

of this thesis and discusses potential areas for future research.

10.1 Review of Contributions

The primary goal of this thesis was to increase the applicability of chance constrained

programming methods. This was accomplished by extending the framework to include

optimization of the feedback controller, predictive control of systems with component

failures, constraint parameter uncertainty, and incorporation of future constraint pa-

rameter sensing.

Since the feedback controller can shape the uncertainty of the system, incorpo-

rating it into the optimization can improve the ability to satisfy the stochastic con-

straints. Prior work used the ellipsoidal relaxation method to satisfy the joint chance

constraints, however, this resulted in a large amount of conservatism degrading the

performance of the overall system. In this thesis, a novel method was developed to

optimize over both the risk allocation and the feedback controller, and was shown to

enable previously infeasible solutions.

148
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This thesis also presented methods which improved the applicability of stochastic

control for systems with component failures. This problem is difficult to solve due to

the multi-modal probability distribution. Previous work considered using the mixed

integer programming method to solve this problem, but this approach has a large

computational complexity limiting its applicability. This thesis proposed applying

the CVaR method which drastically reduced the computational complexity, leading

to the potential solution of larger problems.

Another important area that was considered in this thesis was the extension of the

chance constrained framework to handle problems with both uncertain constraint pa-

rameters and variables. This extension presented several challenges. The constraints

become sums of products of random variables, increasing the difficulty of evaluat-

ing the chance constraints. Either a Gaussian approximation or the CVaR sampling

method could be used to represent the constraints, but this is shown to result in

either a nonconvex optimization program or increased computational complexity. In

addition, to incorporate measurements of the uncertain constraint parameters into

the problem formulation, a policy must be calculated for the entire belief space. In

general this problem is intractable due to its large computational complexity.

To handle these difficulties two novel algorithms was proposed. A hybrid approach

was developed to solve the stochastic control problem with uncertain constraint pa-

rameters. This method uses a combination of sampling and analytic functions to

represent the probability distributions of the system and constraint parameters. This

approach results in a convex optimization program under certain conditions, guaran-

teeing the optimal solution and reducing the computational complexity. Also, a hier-

archical method was developed to incorporate future measurements of the constraint

parameters. This method splits the stochastic control problem into two stages: (i)

an exploration stage that calculates a high level policy for incorporating information

from potential future measurements, (ii) an execution stage that solves a stochastic

control problem to execute the high level policy.

Lastly, this thesis presented the first successful, real-time experimental demonstra-

tion of chance constrained control with uncertain constraint parameters and variables.

The proposed stochastic control methods were solved in real-time to plan trajectories
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for a quadrotor unmanned aerial vehicle navigating in a three-dimensional cluttered,

uncertain environment. These methods enabled the quadrotor to successfully trade-

off exploring to gather more information and completing its objective.

10.2 Future Research Directions

The research presented in this thesis can be extended in several interesting areas.

This section describes several of these extensions.

State Dependent Noise

For the methods presented in this thesis, the noise for the system state was allowed to

be time-varying but the distribution was assumed to be known a priori. However, in

many cases, the noise parameters are dependent upon the system state. For example,

for a ground vehicle, the surface properties depend upon the location of the vehicle

relative to the terrain (e.g., the vehicle will have different dynamics on gravel versus

sand).

Directly incorporating state dependent noise into the current stochastic control

framework results in a nonconvex optimization program. One potential approach for

handling state dependent noise is to employ an iterative scheme by locally optimizing

around a nominal trajectory. The noise properties would be calculated based upon

this nominal trajectory.

An alternative approach, similar to the dual control method for uncertain con-

straint parameters, is to solve the problem in a two-stage scheme. In the first stage,

an abstraction of the dynamics are used to calculate a high-level route. In the second

stage, the noise parameters are computed based on the high-level route and are used

to formulate the standard stochastic control problem.

Distributed Optimization

This thesis considered the use of sampling methods such as CVaR for solving many of

the addressed stochastic control problems. While the sampling methods are attractive
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for solving these types of problems, their computational complexity grows with the

number of samples needed to accurately represent the probability distribution of the

system. For some applications, even though the CVaR method results in a convex

optimization program, the required number of samples may be prohibitive for real-

time application.

In order to increase the real-time applicability of the CVaR method, algorithms for

parallelizing the solution of the optimization program should be investigated which

can benefit from the rise of multi-core processors. One potential approach is to divide

the samples into smaller groups which can be solved faster on separate processors.

Given this split into smaller problems, an iterative scheme may be necessary to ensure

consensus between the solutions.

Model Predictive Control

There are two exciting extensions in the area of incorporating chance constraints

in Model Predictive Control (MPC). MPC is an iterative control algorithm with

the following three steps: (1) solve an optimization program for the control inputs,

(2) apply the first control input, and (3) update the system state based upon the

measurements. This iterative procedure has been very successful in controlling a

wide range of systems.

MPC has been applied to solve the stochastic control problem with individual

chance constraints. One interesting area of future work is to extend the MPC frame-

work to handle joint chance constraints. This is difficult due to the need to iteratively

allocate risk over the future time-steps. If this is not done carefully then the resulting

solution might be overly risky, or the solution may be conservative degrading the

system performance.

A second potential extension is to improve the application of the sampling method

in MPC. Due to the iterative nature of the MPC framework, the previous iteration’s

solution may be used to enable a more targeted sampling strategy of the uncertainty

distributions. This can improve the solution quality and reduce the computational

complexity.



CHAPTER 10. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 152

Feedback Policy of the Uncertain Constraint Parameters

In the presented solution methodology for handling uncertain constraint parameters,

as the probability distribution for the parameters changes the entire optimization

program needs to be resolved to take advantage of the new information. To eliminate

this, future research could investigate solving for a feedback policy that is not only

dependent upon the system state but also on the constraint parameters. This would

increase the computational complexity of the optimization program, however the

program could be solved offline. This feedback policy of the uncertain constraint

parameters would reduce the complexity of the online controller by eliminating the

need to resolve the optimization program when the distribution changes.
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