
A Hierarchical Method for Stochastic Motion Planning in Uncertain
Environments

Michael P. Vitus
University of California at Berkeley

Wei Zhang
Ohio State University

Claire J. Tomlin
University of California at Berkeley

Abstract— This paper considers the problem of stochastic
motion planning in uncertain environments, and extends exist-
ing chance constrained optimal control solutions. Due to the
imperfect knowledge of the system state caused by motion
uncertainty, sensor noise and environment uncertainty, the
system constraints cannot be guaranteed to be satisfied and
consequently must be considered probabilistically. To account
for the uncertainty, the constraints are formulated as convex
constraints on a random variable, known as chance constraints,
with the violation probability of all the constraints guaranteed
to be below a threshold. Standard chance constrained stochastic
motion planning methods do not incorporate environmental
sensing which typically leads to overly-conservative solutions.
To address this, a novel hierarchical framework is proposed that
consists of two main steps: an expected shortest path problem
on an uncertain graph and a chance constrained motion
planning problem. The first successful, real-time experimental
demonstration of chance constrained control with uncertain
constraint parameters and variables is also presented for a
quadrotor equipped with a Kinect sensor navigating through
an uncertain, cluttered 3D environment.

I. INTRODUCTION

Robotic and autonomous systems are becoming increas-
ingly prevalent in everyday life; there are robots which clean
floors, teleprescence robots that can buy and deliver break-
fast, personal robots for cleaning a room, robotic surgeons,
driver assistance systems for automatic parking and adaptive
cruise control, and even fully autonomous cars. A critical
challenge for planning in all of these systems is the presence
of uncertainty which must be accounted for explicitly in
order to maximize the success of the plans.

The uncertainty in the planning problem arises from
three different sources: (i) motion uncertainty, (ii) sensing
uncertainty and (iii) environment uncertainty. The presence
of these uncertainties means that the exact system state
is never truly known. Consequently, in order to maximize
the probability of success, the planning problem must be
performed in the space of probability distributions of the
system, defined as the belief space. For a stochastic system,
however, planning in the belief space is not enough to
guarantee success because there is always a small probability
that a large disturbance will be experienced. Therefore, a
trade-off must be made between the conservativeness of the
plan and the performance of the system.

The problem of motion planning with motion noise, sens-
ing noise and environment uncertainty has been studied in the
past. Some previous planners [1], [2] account for the motion
uncertainty of the system but do not account for the partial
observability of the system state or the sensing uncertainty.
Others [3], [4] have included both the motion and sensing
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uncertainty when planning paths through the environment,
but they simplify the problem by assuming the maximum
likelihood observation is received for all future time-steps.
This approximation results in an inaccurate representation of
the probability distribution of the state which can lead to a
violation of the system constraints. Bry and Roy [5] pro-
posed the rapidly-exploring random belief trees algorithm to
account for state dependent stochasticity in the dynamics and
measurements when planning through known environments.

Planning under uncertainty can alternatively be handled
by chance constrained programming introduced by Charnes
and Cooper [6]. This formulation allows constraints with
non-deterministic constraint parameters, named chance con-
straints, while only guaranteeing constraint satisfaction up
to a specified limit. Blackmore et al. extended chance
constrained stochastic motion planning methods in several
ways. In [7], they handle non-Gaussian belief distributions
by approximating them using a finite number of particles.
This transforms the original stochastic control problem into
a deterministic one that can be efficiently solved. This sam-
pling approach, however, becomes intractable as the number
of samples needed to fully represent the true belief state
increases. The work by Blackmore et al. [8] approximated
the chance constraints using Boole’s inequality and used the
idea of risk allocation introduced by [9] to distribute the risk
of violating each chance constraint while still guaranteeing
the specified level of safety. Vitus and Tomlin [10], [11]
also extended the chance constrained methods to incorpo-
rate environment uncertainty, but they did not account for
environmental sensing.

Another method of modeling the problem of stochastic
motion planning through uncertain environments is by using
Partially Observable Markov Decision Processes (POMDPs).
A POMDP models a system’s decision process in which
the system’s dynamics are not necessarily deterministic, but
rather the outcome of its actions could be stochastic, and the
system does not know the true underlying state. Instead, the
system must take measurements of the underlying state and
maintain a probability distribution over all possible states. In
order to solve a POMDP, a policy must be calculated for the
entire belief space that determines the best action for every
possible future belief state that it may encounter. The main
difficulty in solving a POMDP is its large computational
complexity, and in general solving a POMDP exactly is
intractable.

Several researchers have proposed efficient solution tech-
niques for solving POMDPs. The work of Hsu et al. [12] re-
duced the computational complexity by exploiting the mixed
observability of the problem by only maintaining a belief
space over the partially observable states. The use of macro-



actions has also been used to decrease the computational
complexity [13]. Instead of using the full action space,
these methods use a sequence of primitive actions called
macro-actions; this restricts the policy space and reduces the
action branching factor leading to longer planning horizons.
However these methods are still too complex to solve the
problem of interest.

This work extends previous chance constrained program-
ming formulations used to solve the stochastic motion
planning problem in uncertain environments by allowing
the environmental uncertainty to be affected by onboard
sensors. Typically, standard chance constrained algorithms
only account for motion noise, system state sensing noise
and a priori environmental uncertainty, but they neglect to
include any environmental sensing which leads to conserva-
tive solutions. A novel hierarchical framework, composed
of two main steps, is proposed that incorporates future
information to improve the solution over traditional methods.
First, an expected shortest path problem on an uncertain
graph is solved to determine how the robot should navigate
the environment; this step incorporates external sensing and
information gain into the problem through the probabilities
of the uncertain graph. Second, a chance constrained motion
planning problem is solved to execute the expected shortest
path plan. As the robot executes the trajectory, the robot’s
sensors are used to update the model of the environment
and replanning occurs as necessary. Finally, the algorithms
are validated on the first successful, real-time experimental
demonstration of chance constrained control with uncertain
constraint parameters and variables. The experiment consists
of a quadrotor equipped with a Kinect sensor navigating
through an uncertain, cluttered 3D environment.

The paper proceeds as follows. Section II describes the
stochastic problem, and the standard chance constrained mo-
tion planning formulation. A motivating example for the need
for incorporating environmental sensing into the stochastic
control solution is presented in Section III. In Section IV
the proposed hierarchical method is developed. The method
is experimentally demonstrated in real-time on a quadrotor
vehicle navigating through a 3D environment in Section V.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N − 1], (1)

where xk ∈ Rn is the system state, wk ∈ Rn is the process
noise and N is the time horizon. The initial state, x0, is
assumed to be a Gaussian random variable with mean x̄0
and covariance Σ0 i.e., x0 ∼ N (x̄0,Σ0). At each time step,
a noisy measurement of the state is taken, defined by

yk = Cxk + vk, ∀k ∈ [1, N ], (2)

where yk ∈ Rp and vk ∈ Rp are the measurement output and
noise of the sensor at time k, respectively. The process and
measurement noise have zero mean Gaussian distributions,
wk ∼ N (0,Σw) and vk ∼ N (0,Σv). The process
noise, measurement noise and initial state are assumed to be
mutually independent. For notational convenience, the state

and control inputs for all time-steps are concatenated to form,
X =

[
xT
1 . . . xT

N

]T
and U =

[
uT
0 . . . uT

N−1
]T

.
The control inputs are required to be in a convex region

denoted by FU and the system state is restricted to be in a
feasible region denoted by FX . To simplify the presentation
of the material, the feasible region FX is assumed to be
convex. Nonconvex regions can still be handled, however,
either by (i) performing branch and bound on the set of
conjunction and disjunction linear state constraints directly,
or by (ii) decomposing the space into convex regions and
using branch and bound to determine when to enter/exit each
convex subregion. Given this assumption, the feasible region
can be defined by a conjunction of NFX

linear inequality
constraints,

FX ,

NFX⋂
i=1

{
X : hT

iX ≤ bi
}

(3)

where hi ∈ RnN and bi ∈ R. In this work, the environment
is uncertain but the parameters of the probability distribution
describing hi and bi are assumed to be known.

In this formulation, it is assumed that a linear feedback
trajectory controller has been designed and it uses a Kalman
filter to estimate the state. Given these choices, the distribu-
tion of the closed-loop system can be calculated a priori and
is given by a Gaussian distribution: X ∼ N

(
X̄,ΣX

)
.

The general belief space planning problem is posed as the
optimization program (4). The optimization variable is the
desired trajectory through the environment that the controller
should follow. The objective function, f(·), is assumed to be
a convex function in X and U.

minimize E [f(X,U)]
subject to

xk+1 =Axk+Buk+wk, ∀k∈ [0, N−1]
yk = Cxk + vk, ∀k ∈ [1, N ]
Ū ∈ FU

P(X /∈ FX) ≤ δ

(4)

The difficulty in solving the optimization program (4)
is in evaluating the chance constraints: P(X /∈ FX) ≤ δ.
In particular, by allowing H and b to be uncertain, the
distribution of HTX − b becomes a sum of products of
random variables. In general, the properties of the probability
distribution for this constraint are not easy to calculate
analytically, increasing the complexity of the problem. For an
in-depth discussion on efficient methods to solve the previous
chance constrained optimization program please refer to [10],
[11], and the following sections assume that the optimization
program (4) can be solved.

The current formulation does not take into account the
ability to sense the environment which will lead to a
conservative strategy for navigating through the uncertain
environment. The following section motivates the need for
incorporating sensing of the uncertain environment into the
stochastic control solution.

III. MOTIVATING EXAMPLE FOR DUAL CONTROL

The system has double integrator dynamics with a time-
step of ∆t = 0.1 seconds and a time-horizon of N = 65.



The noise parameters are Σw = 0.0002I and Σv = 0.001I .
The allowed probability of constraint violation is δ = 0.05.
The objective function for this problem is quadratic in
the final state as well as the control inputs f(X̄, Ū) =
(xN − xref)

T
Qobj (xN − xref) + ŪTRobjŪ, with Qobj = 50I ,

Robj = 0.001I and xref =
[

2 1 0 0
]T

.
The environment is modeled by a set of half plane con-

straints defined by a series of end points, which are assumed
to be uncertain. The uncertainty is modeled by a truncated
Gaussian represented as the orange ellipses in Figure 1.

The solution without incorporating constraint sensing of
the optimization program (4) is shown in Figure 1. Here,
the system must take the longer route around the top of
the obstacle because the bottom route violates the chance
constraints due to the large environmental uncertainty in the
second corridor. This results in a path length of 2 times larger
than if the system was able to take the bottom route.

For this example, the system is forced to take the longer
path because environmental sensing is not taken into ac-
count. In this case, it might have been beneficial for the
system to gain information by exploring the environment to
improve the solution of its task. For instance, the shorter
path might have been enabled through sensing the walls in
the environment while executing its trajectory. The proposed
hierarchical framework developed in the following section
systematically trades off between exploring to gain informa-
tion and accomplishing the task while ensuring the chance
constraints are satisfied.
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Fig. 1. The white area is the feasible region of the system state and the
orange ellipses are the uncertainty of the environment. The blue, solid line
is the solution when accounting for the uncertainty of the environment. The
blue ellipses around the path indicate the uncertainty of the system. The
start and goal location are marked by an ‘o’ and ‘x’, respectively.

IV. HIERARCHICAL METHOD

One way of incorporating environment sensing is by
modeling the problem as a POMDP. The main difficulty in
solving this POMDP is its large computational complexity,
and in general solving a POMDP exactly is intractable.
The two main causes of the large computational complex-
ity is the curse of dimensionality and the long planning
horizons. The previous state of the art methods [12], [13]
for solving POMDPs do not result in a tractable solution
method. Consequently, a new algorithm is needed to account
for the environmental uncertainty and to reduce the large
computational complexity.

In order to overcome the high computational complexity
of solving the problem, it is broken down into two phases:
(i) an expected shortest path problem on an uncertain graph
and (ii) a chance constrained optimization problem.

This method reduces the complexity in two ways. The
first step uses an abstraction of the dynamics and sensing
to determine how the system should explore the uncer-
tain environment. Instead of modeling the individual sensor
measurements for the environment, only the outcome of
the sensing is used. Specifically, the probability of the
environment being passable after sensing is calculated. By
using these two abstractions, this drastically reduces the
size of the planning space. The second step reduces the
computational complexity by solving the stochastic control
problem around the highlevel plan from the first step. By
decomposing the problem in this way, the size of the belief
space is significantly reduced by planning only where it
is best to observe the environment. This in turn greatly
reduces the complexity. The hierarchical method is described
in Algorithm 1.

The first step of the algorithm decomposes the environ-
ment into a set of nodes and edges as shown in Figure 2.
Then the probability the link will be traversable after sensing
is calculated. After the graph is built, the expected shortest
path problem can be solved to provide a highlevel plan
for the chance constrained stochastic motion planning al-
gorithm. Then the robot will execute the plan and sense
the environment to update the probability distribution of
the environment. This procedure repeats until the robot
completes its objective.

Algorithm 1 Hierarchical Stochastic Motion Planning
1: while objective not complete do
2: Decompose the environment into a graph
3: Calculate the probabilities of the edges being

traversable after sensing
4: Solve the expected shortest path problem
5: Solve the chance constrained stochastic motion plan-

ning problem
6: Execute the plan while sensing the environment
7: end while

A. Environment Decomposition
The first step in using the hierarchical stochastic motion

planning algorithm is to decompose the environment into
a graph. There are several different methods that can be
used and the design of the decomposition algorithm is out
of the scope of this paper. One approach would be to build
a graph based upon motion primitives. Care should be taken
to provide a decomposition of the environment that is as
dynamically feasible as possible to ensure that the robot
can execute the highlevel plan. Once the graph has been
constructed, the probability for each link being traversable
after sensing needs to be calculated.

To simplify the discussion, the environmental uncertainty
is assumed to only be in the parameter b. The probability of
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Fig. 2. A graph based decomposition of the environment. The dotted link
has a large probability of failure before sensing but after sensing it has a
large probability of being traversable.

collision before sensing for a single constraint (i.e. HTX ∈ R
and b ∈ R) is calculated via

P
(
HTX > b

)
=

∫ ∫
1
(
HTX > b

)
P(b)P(X)dbdX. (5)

However, the statistic needed for each link in the expected
shortest path problem is the probability that after sensing
the link will be traversable. In order to calculate this, an
allowed probability of collision (ε) for the constraint needs
to be allocated which will be discussed in the following
section. Once the allowed probability of collision for the
constraint has been determined, the probability the link will
be traversable after sensing is calculated via

P
(
P
(
HTX > b|H, b

)
≤ ε
)
, (6)

where ε is the allowed probability of constraint violation
associated with the constraint. For the current derivation
with uncertainty only in the parameter b, Eqn. (6) can be
simplified further to

P
(
P
(
HTX > b|b

)
≤ ε
)
=

∫
1
(
P
(
HTX > b|b

)
≤ ε
)

P(b)db.

(7)
If b∗ can be found such that P

(
HTX > b|b

)
≤ ε for b ≥ b∗

and P
(
HTX > b|b

)
> ε for b < b∗, then the probability in

Eqn. (7) can be simplified to

P
(
P
(
HTX > b|b

)
≤ ε
)

=

∫ ∞
b∗

P(b)db. (8)

For a given link, if there is more than one constraint, then
a similar methodology can be used to determine an analytic
formula for the probability. If both H and b are uncertain, the
complexity of calculating the probability increases because
it requires evaluating multivariate integrals, however, it can
be efficiently calculated through Monte Carlo sampling.

Consider how this new formulation would effect the results
in the previous example shown in Figure 1. The probability
of failure for traversing the dotted link in Figure 2 before
sensing is 0.15 but the probability the link will be traversable
after sensing is 0.64 for an allowed probability of failure of
0.02. The large probability of failure before sensing requires
the robot to take the long route around the obstacle in
Figure 1. However, the large probability that the link will be
traversable after sensing suggests that it might be beneficial
to first investigate whether or not the corridor is traversable.

The best strategy for navigating the environment can be
calculated by solving the expected shortest path problem

through the defined uncertain graph, however the strategy
is highly impacted by the risk assigned to each edge. The
following section discusses a method for allocating these
risks through convex optimization.
B. Risk Allocation for the Graph Decomposition

To calculate the probability of failure after sensing, the
allowed risk for each link needs to be known. If the allowed
risk is improperly assigned, then it may cause certain paths
that should be explored to be overlooked by the expected
shortest path algorithm. Therefore it is necessary to carefully
allocate the risk in order to correctly trade off between explo-
ration and execution in the expected shortest path calculation.
The method presented below is based upon solving a convex
optimization problem.

An example environment decomposition is given by the
undirected graph in Figure 3(a). Here, pij is the prob-
ability after sensing that the edge between node i and
j will be passable and is defined as pij = fij(εij),
with fij(εij) given by Eqn. (6). Let eij be the edge
between node i and j. For any path through the graph,
there is a set of edges {e(1), . . . , e(n)} with associ-
ated probabilities {p(1), . . . , p(n)} and probability functions
{f (1)(ε(1)), . . . , f (n)(ε(n))}.

For the systems considered the probability functions fij
are positive, nondecreasing functions of the allowed risk,
and they are typically log-concave functions which will be
exploited in formulating the problem. One example of the
probability function is shown in Figure 3(b).
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Fig. 3. (a) An example graph for the calculation of the expected shortest
path. (b) An example of the probability of the link being traversable after
sensing versus the allowed risk.

One method of assigning the risk for each edge is by
maximizing the probability the path will be passable. The a
priori probability that after sensing the path between any two
nodes will be passable is the product of the probabilities for
each edge that is traveled, i.e.

∏n
m=1 p

(m). This assignment
of risk can be obtained by solving the following optimization
program.

maximize
∏n

m=1 f
(m)(ε(m))

subject to
ε(m) ≥ 0, m = 1, . . . , n∑n

m=1 ε
(m) ≤ δ, m = 1, . . . , n

(9)

The optimization program maximizes the probability of
success subject to the constraint that the sum of the assigned
risk over the path is smaller than the user allowed amount.
Unfortunately, this program is not necessarily convex be-
cause the objective function is not guaranteed to be concave.
To form a convex optimization program, a set of slack
variables are introduced based upon the logarithm of the



probability functions and the objective function is replaced
by its logarithm. This results in the following equivalent
convex optimization program.

maximize
∑n

m=1 αm

subject to
ε(m) ≥ 0, m = 1, . . . , n∑n

m=1 ε
(m) ≤ δ

αm ≤ log
(
f (m)(ε(m))

)
, m = 1, . . . , n

(10)
In this formulation, the optimization program will need to

be solved for all paths without cycles between the start and
goal location, and it may assign a different allowed risk for
each link depending on the path. To obtain a risk assignment
for all edges that is independent of the path, the problem
formulation can be changed to a single optimization program
that maximizes the probability of successfully traveling over
all paths subject to the same constraints for all paths.

Using the risk allocation computed from the above for-
mulation, the expected shortest path problem is solved next
in order to determine the trade off between exploring to
gain more information and completing the objective of the
planning process.

C. Expected Shortest Path

The expected shortest path problem on an uncertain graph
has been extensively studied. The approach taken in this
work is to convert the problem into a Markov Decision
Process (MDP) as shown in [14]. There are many different
solution methodologies to solve for the exact solution of
a MDP, such as value or policy iteration. However, the
formulation of the expected shortest path problem as a MDP
has an exponential growth of states with respect to the
number of uncertain edges in the graph. Since each uncertain
edge can have three values associated with it, {0, 1,P(e)},
the number of states in the graph could be as large as
|V (G)| · 3|E(G)|. This exponential growth of the number of
states will prohibit solving for the exact solution for large
sized problems. Fortunately, there are many approximate
MDP solvers [15] that can handle large size problems and
provide near optimal solutions for the exploration phase of
the algorithm.

D. Stochastic Motion Planning

Once the expected shortest path problem has been solved
to determine the route the robot should take, the standard
stochastic motion planning problem can be formulated and
solved as shown in Section II. Since parts of the uncertain
environment are too risky to pass through before sensing,
the robot continuously senses the environment and updates
the probability distribution of its parameters. If at any point
it determines that the highlevel plan will violate the chance
constraints, it will then re-iterate the algorithm solving for a
new highlevel plan.

E. Example

The same example as in Section III is solved through the
proposed hierarchical stochastic motion planning algorithm
and the solution is shown in Figure 4. After solving the

expected shortest path problem, the best path for the robot
to take is around the bottom of the obstacle, as shown
in Figure 4(a), even though the probability of failure in
the second corridor before sensing violates the constraints.
As the robot executes the plan, it continuously senses the
environment and updates the probability distribution of the
environment and determines that for this environment the
corridor is passable. Consequently, it proceeds directly to the
intended goal location as shown in Figure 4(b). However,
if after sensing the environment the robot determined that
the corridor was indeed impassable then it would have
backtracked and proceeded around the top of the obstacle
as displayed in Figure 4(c).

As compared to the previous chance constrained program-
ming solution shown in Figure 1, the proposed algorithm
is able to take into account the environmental sensing and
reduces the cost by 30% on average.

(a) (b) (c)
Fig. 4. The solution from the hierarchical stochastic motion planning
algorithm. (a) The best strategy is to attempt to take the shortest path to
the goal location to sense the uncertain corridor. (b) After incorporating
the measurements of the environment, the robot replans and is able to take
the shortest path to the goal location. (c) For a different realization of the
environment, after sensing the environment the probability of failure is too
large for the shortest path and forces the robot to backtrack.

V. EXPERIMENTAL DEMONSTRATION

The hierarchical stochastic motion planning algorithm
was also evaluated on a quadrotor unmanned aerial vehi-
cle. To the authors knowledge, this is the first successful,
real-time experimental demonstration of chance constrained
control through uncertain environments. All the algorithms
were executed in real-time on a Intel Core i7 2.67 GHz
computer without any human intervention. This experiment
demonstrates the ability to use the chance constrained pro-
gramming techniques for real-time applications. A video of
the experiment can be found at http://hybrid.eecs.
berkeley.edu/˜vitus/iros2012

The vehicle has an onboard inertial measurement unit
which provides three-axis attitude, attitude rate and acceler-
ation measurements. An external Vicon positioning system
is also used to provide measurements of the quadrotor’s
position with respect to a global coordinate frame. While the
Vicon positioning system does provide very accurate mea-
surements, the system is still greatly affected by disturbances
created by the downwash of the rotors interacting with
nearby objects. Therefore, the motion of the vehicle must
be consider probabilistically. To sense the environment, the
quadrotor was equipped with a Kinect sensor that provides
a dense 3D point cloud measurement of the environment.

An initial map of the environment was constructed by
manually flying the quadrotor around. The quadrotor is



navigating through a cluttered 3D environment as displayed
in Figure 5. In this example there are two sources of
environment uncertainty: (i) the obstacle locations are not
known exactly due to the sensing error of the Kinect sensor,
(ii) the cabinet that is outlined with the orange dotted line
in Figure 5 has a 0.3 probability of its door being open.
If the door is open it would prevent the quadrotor from
taking the shortest path to the goal location. The error
from the Kinect sensor can be directly incorporated into the
chance constrained stochastic motion planning algorithm by
including it in the probability distribution of the uncertain
environment.

The proposed hierarchical motion planning algorithm was
solved in real-time and the results are shown in Figure 6. The
solution from the expected shortest path problem instructed
the quadrotor to first determine if the cabinet door was open
then either proceed directly to the goal location or backtrack
through the middle corridor. To solve the chance constrained
stochastic motion planning problem the environment was
decomposed into convex polytopes and the quadrotor’s state
was constrained to be within one of the polytopes. An initial
path was determined through A∗ search as developed in [16].
Figure 6 shows the final map of the environment in which
each point is color coded based upon the height off the floor.
The start and goal location are shown as the green and red
sphere, respectively. The planned trajectory is shown as the
orange line and the executed trajectory of the quadrotor is
the blue line. In this experimental trial the cabinet door was
open which prevented the quadrotor from taking the shortest
path to the goal location.

Goal
Cabinet Door

Fig. 5. An image of the stochastic environment. The start position is out
of view on the bottom lefthand corner of the image and the goal location is
marked by the red circle. The cabinet on the right of the image marked by
the orange dotted rectangle is stochastic in the nature that the door could
be open or closed which might prevent the robot from passing through that
corridor.

Fig. 6. The final point cloud representation of the environment. The start
and goal locations are the green and red spheres, respectively. The points
correspond to obstacle locations and are color coded based upon the height
off the floor. The planned trajectory is shown as the orange line through the
environment and the trajectory of the quadrotor is shown as the blue line.

VI. CONCLUSION

In this work, a hierarchical stochastic motion planning
algorithm was proposed to incorporate external sensing. The
algorithm is composed of two steps: an expected shortest
path problem is solved to determine the route the robot
should take through the environment, and a chance con-
strained optimization problem is solved for the robot’s trajec-
tory. The algorithm was successfully demonstrated in real-
time on a quadrotor vehicle navigating through a cluttered
3D environment.
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