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Abstract: This paper introduces a new formulation for solving the planning problem for linear,
Gaussian stochastic systems through uncertain environments. Due to the imperfect knowledge
of the system state caused by motion uncertainty, sensor noise and environment uncertainty, the
system constraints cannot be guaranteed to be satisfied and consequently must be considered
probabilistically. For a known environment, the constraints can be modeled as conjunctions,
unions of convex expressions of univariate Gaussian random variables. However, for uncertain
environments the constraints transform into the sums of products of random variables which
do not have a closed-form analytical expression. In general, to calculate the probability of
constraint violation a sampling method would have to be used to evaluate the multivariate
integrals; this sampling strategy would be computationally expensive and possibly intractable
for higher dimensional systems. Fortunately, even for low-dimensional systems the constraints
are shown to be very well approximated by a univariate Gaussian distribution and can be
evaluated efficiently. The violation probability of all the constraints is guaranteed to be below a
threshold that trades off the performance of the system and the conservativeness of the solution.
In contrast to similar methods, the proposed framework considers the specific estimator and
controller used in the closed-loop system in order to fully characterize the a priori distribution
of the closed-loop system state. Using this distribution, an optimization program is formulated to
solve for a locally optimal solution for the closed-loop system. The performance of the algorithm
is demonstrated through an example.

Keywords: Motion Planning, Chance Constraints, Robust Control, Probabilistic Risk
Assessment.

1. INTRODUCTION

With the advances in technology of robotic systems, there
has been a growing number of robots deployed to perform
challenging tasks such as: search and rescue, reconnais-
sance, surveillance, and disaster response. In all of these
tasks, there is a pressing need for algorithms to plan safe
trajectories through complex environments. The general
motion planning problem involves generating a trajectory
that accomplishes a defined task while operating under
specified system dynamics and constraints. In the planning
process the system cannot be assumed to be determinis-
tic, rather the inherit uncertainty of the system must be
accounted for explicitly in order to maximize the success
of the resulting plan.

The uncertainty in the planning problem arises from three
different sources: (i) motion uncertainty, (ii) sensing noise
and (iii) environment uncertainty. The presence of these
uncertainties means that the exact system state is never
truly known. Consequently, in order to maximize the prob-
ability of success, the planning problem must be performed
in the space of probability distributions of the system, de-
fined as the belief space. For a stochastic system, however,
? This work is supported in part by NASA (#NNA06CN22A) and
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planning in the belief space is not enough to guarantee
success because there is always a small probability that a
large disturbance will be experienced. Therefore, a trade-
off must be made between the conservativeness of the plan
and the performance of the system.

The problem of motion planning with motion noise, sens-
ing noise and/or environment uncertainty has been stud-
ied in the past. Some previous planners (Melchior and
Simmons (2007), Alterovitz et al. (2007)) account for the
motion uncertainty of the system but do not account
for the partial observability of the system state or the
sensing uncertainty. Others (Huynh and Roy (2009), Pepy
and Lambert (2006)) have included both the motion and
sensing uncertainty when planning paths through the en-
vironment, but they simplify the problem by assuming the
maximum likelihood observation is received for all future
time-steps. This approximation results in an inaccurate
representation of the probability distribution of the system
state which can lead to a violation of the constraints on
the system.

Charnes and Cooper (1963) introduced the problem of
chance constrained programming which allows for non-
deterministic constraint parameters, while only guarantee-
ing constraint satisfaction up to a specified limit. A thor-



ough account of existing literature employing this problem
formulation is given in Prékopa (1995). Recently, Calafiore
and El Ghaoui (2007) investigated an inequality chance
constrained linear program with uncertain constraint pa-
rameters. They showed that for a wide class of probability
distributions the problem can be converted into a second
order cone program. The problem considered in this pa-
per is related to this work, with the added difficulty of
incorporating probabilistic constraint variables.

A group of researchers used the chance constrained pro-
gramming formulation to model the planning problem as
an optimal control problem. In Blackmore (2006), they
handle non-Gaussian belief distributions by approximating
them using a finite number of particles. This transforms
the original stochastic control problem into a deterministic
one that can be efficiently solved. This sampling approach,
however, becomes intractable as the number of samples
needed to represent the true belief state increases. The
work by Blackmore and Ono (2009) utilized Boole’s in-
equality to approximate the chance constraints, typically
resulting in a very small amount of over-conservativeness.
They also used the idea of risk allocation introduced
by Prékopa (1999) to distribute the risk of violating each
chance constraint while still guaranteeing safety.

The work by van Hessem (2004) optimized over the feed-
back control laws and open-loop inputs while ensuring that
the chance constraints on the overall system were satisfied.
They used an ellipsoidal relaxation technique to convert
the stochastic problem into a deterministic one but this
leads to a conservative solution.

Incorporating environment uncertainty into the motion
planning problem has also received some attention. Mis-
siuro and Roy (2006) handled uncertain environments by
modifying the sampler used in a probabilistic roadmap.
However, while the algorithm accounts for the environ-
ment uncertainty, motion noise or sensing noise is not
accounted for. Burns and Brock (2007) also proposed a
sampling-based planner to incorporate environment sens-
ing uncertainty into the planning process but do not di-
rectly handle motion noise.

This work extends previous chance constrained program-
ming formulations to solve the motion planning problem
in uncertain environments. A framework is proposed that
formulates the motion planning problem for a linear, Gaus-
sian system operating in an uncertain environment as an
optimal control problem. The probabilistic constraints on
the system state are shown to be distributed via the sums
of products of random variables. In general the constraint
expression does not have a closed-form analytical expres-
sion and requires the evaluation of multivariate integrals.
One way to calculate the probability of constraint violation
is through sampling but it is computationally expensive
and becomes intractable as the system size increases. For-
tunately, it is shown that even for low-dimensional systems
the expression is very well approximated by a univariate
Gaussian distribution due to the central limit theorem.
Consequently this representation allows for the efficient
computation of the probability of constraint violation for
otherwise intractable problems. The formulation also con-
siders the closed-loop uncertainty directly to solve for a
locally optimal desired path for the feedback controller.

The paper proceeds as follows. Section 2 describes the
probabilistic problem formulation. Then, the explicit es-
timator and controller used in the closed-loop system is
formally presented in Section 3. In Section 4, the a priori
uncertainty of the closed-loop system is derived which
is used in evaluating the chance constraints presented in
Section 5. The final optimization program is presented in
Section 6, and an example is presented in Section 7 which
characterizes the performance of the algorithm.

2. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N − 1], (1)

where xk ∈ Rn is the system state, wk ∈ Rn is the process
noise and N is the time horizon. The initial state, x0, is
assumed to be a Gaussian random variable with mean x̄0

and covariance Σ0 i.e., x0 ∼ N (x̄0,Σ0). At each time step,
a noisy measurement of the state is taken, defined by

yk = Cxk + vk, ∀k ∈ [1, N ], (2)

where yk ∈ Rp and vk ∈ Rp are the measurement
output and noise of the sensor at time k, respectively. The
process and measurement noise have zero mean Gaussian
distributions, wk ∼ N (0,Σw) and vk ∼ N (0,Σv).
The process noise, measurement noise and initial state
are assumed to be mutually independent. For notational
convenience, the state and control inputs for all time-

steps are concatenated to form, X =
[
xT

1 . . . xT
N

]T
and

U =
[
uT

0 . . . uT
N−1

]T
. The control inputs are required

to be in a convex region denoted by FU and the system
state is restricted to be in a feasible region denoted by FX .

For simplicity, the feasible region FX is assumed to be
convex. Nonconvex regions can still be handled, however,
either by (i) performing branch and bound on the set
of conjunction and disjunction linear state constraints
directly, or by (ii) decomposing the space into convex
regions and using branch and bound to determine when to
enter/exit each convex subregion. Given this assumption,
the feasible region can be defined by a conjunction of NFX
linear inequality constraints,

FX ,

NFX⋂
i=1

{
X : aT

i X ≤ bi
}

(3)

where ai ∈ RnN and bi ∈ R. In this work, the environment
is uncertain but the parameters of the probability distri-
bution describing ai and bi are assumed to be known.

The general belief space planning problem is posed as the
optimization program, shown as Program P2.1. The ob-
jective function, f(·), is assumed to be a convex function.

Motion Planning Problem

minimize E (f(X,U))
subject to

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N−1]
yk = Cxk + vk, ∀k ∈ [1, N ]
wk ∼ N (0,Σw), ∀k ∈ [0, N−1]
vk ∼ N (0,Σv), ∀k ∈ [1, N ]
U ∈ FU
P(X /∈ FX) ≤ δ

(P2.1)



The difficulty in solving the optimization program P2.1
is in evaluating the chance constraints: P(X /∈ FX) ≤
δ. The complexity arises from the need to characterize
the probability distribution of the system state at each
time-step and from evaluating the multivariate integrals
over the uncertain environment to calculate the desired
probability of failure.

Characterizing the closed-loop probability distribution is
particularly difficult since the properties of the estima-
tor and controller need to be taken into account. Con-
sequently, the specific estimator and controller used in the
system need to be specified to allow characterization of the
uncertainty of the closed-loop system state.

3. SYSTEM DESCRIPTION

The problem formulation in Program P2.1 is independent
of the type of estimator and controller that is used in the
actual system. In this work, a Kalman filter is used as
the estimator and the system is controlled via a linear
quadratic trajectory controller.

3.1 Kalman Filter

Let Σ̂k|k−1 be the covariance matrix of the optimal es-
timate of xk given the measurements {y1, . . . , yk−1} and

let Σ̂k|k be the covariance matrix of the optimal estimate
of xk given the measurements {y1, . . . , yk}. The Kalman
filter operates through the following recursion. The process
update is,

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (4)

Σ̂k|k−1 = AΣ̂k−1|k−1A
T + Σw. (5)

The measurement update is,

x̂k|k = x̂k|k−1 + Lk
(
yk − Cx̂k|k−1

)
(6)

Σ̂k|k = (I − LkC) Σ̂k|k−1 (7)

where I ∈ Rn×n is the identity matrix and

Lk = Σ̂k|k−1C
T
(
CΣ̂k|k−1C

T + Σv

)−1

. (8)

One of the key properties of the Kalman filter is that
the covariance, Σ̂k|k, can be pre-computed before any
measurements are received which allows the uncertainty
of the state to be utilized in the motion planning process.

3.2 Linear Quadratic Gaussian Control

Given perfect state information, the linear quadratic con-
troller minimizes the following cost function,

J = minimize
uk,∀k∈TN

N∑
τ=0

(
xτ − xdτ

)T
Q
(
xτ − xdτ

)
+

N−1∑
τ=0

uT
τ Ruτ ,

(9)
where xdk is the desired trajectory at time-step k. It can be
shown that the optimal input for the system in Eqn. (1)
is an affine function of the current state given by,

u∗k = Kkxk + gk. (10)

The affine parameters, Kk and gk, can be computed by
solving Eqn. (9) through dynamic programming.

Given that there is process and measurement noise, the
exact value of the state xk is not known. Fortunately,

the certainty equivalence principle has been used to show
that the optimal controller for a linear, Gaussian system
with quadratic cost uses the estimate of the state from a
Kalman filter in Eqn. (10), i.e.,

u∗k = Kkx̂k|k + gk. (11)

4. A PRIORI DISTRIBUTION OF THE
CLOSED-LOOP STATE AND CONTROL INPUT

Now that the estimator and controller have been defined,
the probability distribution of the closed-loop system
state, X, can be formulated which is required to evaluate
the chance constraints, P(X /∈ FX) ≤ δ.
Applying the methodology developed in van den Berg et al.
(2010), the closed-loop uncertainty of the system state can
be characterized a priori before any measurements are
received. Given the assumption of the Kalman filter esti-
mator and linear quadratic trajectory tracking controller,
the true and estimated state evolves according to,

zk+1 = Fkzk + B̄gk +Gksk (12)

where

zk =

[
xk
x̂k|k

]
, sk =

[
wk
vk+1

]
B̄ =

[
B
B

]
,

Fk=

[
A BKk

Lk+1CA A+BKk − Lk+1CA

]
, Gk=

[
I 0

Lk+1C Lk+1

]
(13)

with sk ∼ N (0,Σs) and Σs = diag (Σw,Σv) (diag places
the matrices along the diagonal). The system starts from

z0 =
[
xT

0 x̄T
0

]T
. The mean, z̄k, and covariance, Mk, for

the system defined by Eqn. (12) can now be determined,

z̄k+1 = Fkz̄k + B̄gk (14)

Mk+1 = FkMkF
T
k +GkΣsG

T
k , (15)

starting from z̄0 =

[
x̄0

x̄0

]
and M0 =

[
Σ0 0
0 0

]
. Finally, the

closed-loop state and control input evolves according to,[
xk
uk

]
=

[
I 0
0 Kk

]
︸ ︷︷ ︸

Λk

[
xk
x̂k|k

]
+

[
0
I

]
gk. (16)

Consequently, the a-priori closed-loop state and control
input at time-step k, ∀k ∈ [1, N − 1], is distributed by,[

xk
uk

]
∼ N

([
T xxk x̄0 + T xgk g

Kk(T xxk x̄0 + T xgk g) + gk

]
,ΛkMkΛT

k

)
(17)

where g =
[
gT

0 . . . gT
N−1

]T
. The k-th row of the matrix

T xx is T xxk =
∏k−1
τ=0(A + BKτ ) and the elements of the

matrix T xg are,

T xgij =


0 if j > i
B if j = i

(
∏i
τ=j+1(A+BKτ ))B otherwise

(18)

The constant input term in Eqn. (11) can be defined as a
function of Q, i.e., g = Ψ Q where Ψ is a block diagonal
matrix with entries Ψii = − (R + BTPi+1B)−1BT,
∀i ∈ [0, N − 1]. Also, the vector Q can be written in terms
of the desired trajectory, Q = ΦXd where Φ is defined as
∀i, j ∈ [0, N − 1],



Φij =


0 if j < i
−QT if j = i

−(
∏j
τ=i+1(A+BKτ )T)QT otherwise.

(19)

Consequently, the mean of the closed-loop state is,

X̄ = T xxx̄0 + T xxdXd (20)

where T xxd = T xgΨΦ. The mean of the control inputs is,

Ū = Tux0 x̄0 + TuxdXd (21)

with Tux0 = K̃T xx+

[
K0

0

]
, Tuxd =

(
K̃T xx

d

+ ΨΦ
)

, and

K̃ is a block matrix with [K1, . . . ,KN−1] on the lower off-
diagonal.

5. CHANCE CONSTRAINTS

Using the probability distribution of the closed-loop sys-
tem state formulated in the previous section, the chance
constraints in Program P2.1 can be evaluated efficiently
once the multivariate integrals are simplified.

5.1 Simplification

By using Boole’s inequality, the original chance con-
straint P(X /∈ FX) can be conservatively approximated.
Boole’s inequality states that for a countable set of events
E1, E2, . . ., the probability that at least one event happens
is no larger than the sum of the individual probabilities
P (
⋃
iEi) ≤

∑
i P (Ei). Consequently, from Eqn. (3) and

Boole’s inequality the probability of the state not being
contained inside the feasible region is bounded by,

P(X /∈ FX) = P

(
X ∈

NFX⋃
i=1

{
X : aT

i X > bi
})

≤
∑NFX
i=1 P(aT

i X > bi).

(22)

By allowing environmental uncertainty, ai and bi are now
random variables, adding complexity to previous chance
constrained problem formulations.

5.2 Environment Uncertainty

By allowing ai and bi to be uncertain, the distribution

of
∑nN
j=1 aijXj − bi is now a sum of multiple products of

random variables. Fortunately, the true distribution can be
accurately approximated to allow the efficient evaluation
of the constraints.

Due to the central limit theorem, if the dimension of the

state space is large enough then the sum
∑nN
j=1 aijXj −

bi can be approximated well by a univariate Gaussian
distribution, eliminating the need to evaluate multivariate
integrals. Given this conversion, the probability of con-
straint violation can now be evaluated efficiently.

If the system state and the environment are independent,
then the mean of the distribution is,

E[aT
i X− bi] = E[ai]

TE[X]− E[bi] = āT
i X̄− b̄i (23)

and the covariance is,

var(aT
i X− bi) =

∑nN
j=1 var(aijXj) + var(bi)

+
∑nN
j,k cov(aijXj , aikXk)

+
∑nN
j=1 cov(aijXj , bi).

(24)

To simplify later notation, let σ2
i = var(aT

i X − bi). One
thing to note, is that the covariance might no longer be
able to be computed a priori due to a dependence on the
mean of the system state.

5.3 Univariate Gaussian Constraints

Using the conversion from the previous section, the con-
straints can now be evaluated using the distribution of the
system state. From Eqns. (17) and (20) the closed-loop
state is a Gaussian random variable defined by,

X ∼ N
(
X̄,M

)
(25)

where M = diag(ĨTM1Ĩ , . . . , Ĩ
TMN Ĩ) and Ĩ = [I 0]

T
.

Since the multivariate constraints have been converted to
univariate constraints in Eqn. (22) and can be approx-
imated well as a Gaussian with mean and variance in
Eqns. (23) and (24) respectively, they can be efficiently
evaluated through,

P(aT
i X− bi > 0) =

1√
2π

∫ ∞
b̄i−āT

i
X̄

σi

exp(−z
2

2
)dz

= 1− normcdf(
b̄i − āT

i X̄
σi

)

(26)

where normcdf(x) =
1√
2π

∫ x
−∞ exp(−z

2

2
)dz is the Gaus-

sian cumulative distribution function. Although this func-
tion does not have an analytic solution, it can be efficiently
evaluated using a series approximation or a lookup table.

5.4 Gradient

The gradient of the probability constraints can also be
computed analytically to aid in the solution of the opti-
mization problem. The gradient can be computed through
the chain rule,

∇xdP
(
aT
i X− bi > 0

)
=
∂P
(
aT
i X− bi > 0

)
∂X̄

∇xdX̄. (27)

From Eqn. (26) and the Leibniz integral rule,

∂P
(
aT
i X− bi > 0

)
∂X̄

=

1√
2π

exp(− (bi − aT
i X̄)2

2σ2
i

)

[
āT
i

σi
+
b̄i − āT

i X̄
σ2
i

∂σi
∂X̄

]
.

(28)

Finally, the gradient of X̄ with respect to xd is ∇xdX̄ =
T xxd which results in,

∇xdP
(
aT
i X− bi > 0

)
=

1√
2π

exp(− (bi − aT
i X̄)2

2σ2
i

)T xxd
T
[
āT
i

σi
+
b̄i − āT

i X̄
σ2
i

∂σi
∂X̄

]T

.

(29)

6. NEW OPTIMIZATION PROGRAM

Now that the distribution of the closed-loop system state
and the efficient evaluation of a single chance constraint
have been developed, the satisfaction of the overall prob-
ability constraint, P(X /∈ FX) ≤ δ, needs to be addressed.

For this work, the risk allocation method (Blackmore and
Ono (2009), Prékopa (1999)) was chosen as it provided
increased system performance with only a slight increase



in computational complexity. This method includes the
allowed probability of violation for each univariate con-
straint, P(aT

i X > bi), as an optimization variable, εi. In
order to ensure that the total probability of violation is be-
low the threshold, the optimization variables are restricted
by
∑
εi ≤ δ.

Using this risk allocation technique along with the dis-
tribution of the closed-loop state in Section 4 and the
evaluation of the chance constraints in Section 5, the Pro-
gram P2.1 can now be transformed into the optimization
Program P6.1. The variable that is being optimized is the
desired trajectory, Xd, for the controller to follow.

minimize
Xd

f(X̄, Ū)

subject to
X̄ = T xxx̄0 + T xxdXd
Ū = Tux0 x̄0 + TuxdXd
Ū ∈ FU
zi = b̄i − āT

i X̄, ∀i
σ2
i = var(aT

i X− bi), ∀i
1− normcdf( ziσi ) ≤ εi, ∀i∑NFX
i=1 εi ≤ δ

(P6.1)

Lemma 1. The optimization program P6.1 is not neces-
sarily convex if the objective function, f(·), is a convex
function and δ ≤ 0.5.

Proof. To show the convexity of program P6.1, the ob-
jective function and all the constraints need to be convex.
The objective function, f(·), is assumed to be a convex
function with respect to X̄ and Ū. The first two constraints
are convex because they are affine functions. The input
constraint Ū ∈ FU is convex since the feasible region,
FU is assumed to be a convex region. The convexity of
the program thus depends on the convexity of the chance
constraints

In order for the chance constraints to be convex, the
function normcdf(·) must be concave. It can easily be
shown that the function normcdf(y) is a concave, non-
decreasing function on the domain y ∈ [0,∞). Thus in
order for normcdf( ziσi ) to be concave, the argument must

be both positive and concave (from convex composition
rules). The positiveness is easily guaranteed by requiring
δ ≤ 0.5. Thus the remaining requirement is for zi

σi
to be

concave.
The expression b̄i − āT

i X̄ will preserve the convexity or

concavity of
1

σi
. Therefore, the expression

1

σi
needs to

be shown to be concave. Unfortunately, the denominator
could potentially be the composition of a concave, non-
decreasing function (square root) with a convex expression
(quadratic) of the state mean which is not guaranteed to
be convex or concave on the entire domain. As a result,
the program cannot be guaranteed to be convex. �

7. CASE STUDY: MOTION PLANNING IN A
2-DIMENSIONAL ENVIRONMENT

Now the optimization program P6.1 will be demonstrated
through an example of a motion planning problem in a 2D
Gaussian environment.

7.1 Environment Description

The environment is assumed to be defined by a set of half
plane constraints defined by a series of end points. It is
assumed that the end points for the i-th constraint ei1 and
ei2 are independent, normally distributed,

eij ∼ N

([
ēixj
ēiyj

]
,

[
σ2
ei
xj

0

0 σ2
ei
yj

])
,∀i. (30)

In an abuse of notation, let pk = [xk yk]T be the 2D
position of the vehicle at time-step k with mean p̄k =

[x̄k ȳk]T and covariance cov (pk) =

[
σ2
xk

σ2
xkyk

σ2
xkyk

σ2
yk

]
. The

expression for the feasible region of the system state is,

FX =
{
x : aT

i pk ≤ bi,∀(i, k) ∈ C
}

(31)

where C is the set of constraints on the system. The vector
ai is defined as the outward pointing normal (and without
loss of generality is assumed to be a 90o counterclockwise
rotation of the vector between the end points,

ai =

[
0 −1
1 0

] [
eix2 − eix1

eiy2 − eiy1

]
=

[
eiy1 − eiy2

eix2 − eix1

]
. (32)

The term bi can be calculated using the normal vector, ai,
and one of the end points,

bi = aT
i

[
eix2 e

i
y2

]T
= eix2e

i
y1 − eix1e

i
y2. (33)

The variance of the univariate chance constraint is,

var(aT
i pk − bi) = α5x̄

2
k + α6x̄k + α7ȳ

2
k + α8ȳk + α0, (34)

and can be calculated through standard probability theory.
The parameters αi can be computed a priori but the
variance depends upon the system state and consequently
the control inputs, rendering the Program P6.1 nonconvex.

7.2 Validation Of The Gaussian Constraint Representation

A Monte Carlo simulation of the Gaussian approxima-
tion was performed in which the constraint and system
parameters were generated in a way that the probability
of constraint violation is 0.1. Figure 1 shows the resulting
histogram of the value of the constraint from Monte Carlo
simulation and the analytical Gaussian approximation.
The solid line is the Monte Carlo simulation and the dotted
line is the analytical Gaussian approximation. As the fig-
ure shows, the Gaussian approximation matches the Monte
Carlo evaluation of the constraint. Another Monte Carlo

Fig. 1. Randomly generated constraint (solid) and the
Gaussian approximation (dotted).

simulation of the Gaussian approximation was performed
in which the constraint and system parameters were gener-
ated in a way that the probability of constraint violation is
0.1. The average Gaussian approximation error was 1.64%.
The reason the Gaussian approximation overestimates the
violation probability is because the tails of the distribution
are difficult to capture through random sampling.



7.3 Example

The proposed motion planning method was used to plan
a path through an environment that contains nonconvex
regions which can be transformed into a series of convex
problems Vitus et al. (2008), Ono et al. (2010). The ap-
proach taken in the following example was to decompose
the feasible region into convex tunnels which are then
planned through. The system has double integrator dy-
namics,

A=

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B=

0.5∆t2 0
0 0.5∆t2

∆t 0
0 ∆t

 , C=

[
1 0 0 0
0 1 0 0

]
where ∆t = 0.1 seconds and a time-horizon of N = 20. The
noise parameters are Σw = diag(0.001, 0.001, 0.001, 0.001),
Σv = diag(0.002, 0.002). The objective function for this
problem is quadratic in the final state and the control in-

puts f(X̄, Ū) = (x̄N − xref )
T
Qobj (x̄N − xref )+ŪTRobjŪ,

with Qobj = 50I, Robj = 0.001I and xref = [ 2 1 0 0 ]
T

.

The allowed constraint violation is δ = 0.005 and the
solution is shown in Figure 2. The solution which accounts
for the uncertainty of the environment is shown as the
blue, solid line and has a planning horizon of N = 55
with simulated constraint violation of 0.0038. The green,
dotted line plans through the mean environment with a
horizon of N = 35 and has a simulated constraint violation
of 0.0084. When accounting for the uncertainty of the
environment, the system cannot take the direct path as
the mean environment solution can because the walls in
that corridor have too much uncertainty resulting in the
violation of the probability constraint.
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Fig. 2. The white area is the feasible region of the system
state and the orange ellipses are the uncertainty of the
environment. The blue, solid line is the solution when
accounting for the uncertainty of the environment and
the green, dotted line plans through the mean environ-
ment. The blue ellipses around the path indicate the
uncertainty of the system. The start and goal location
are marked by an ‘o’ and ‘x’, respectively.

8. CONCLUSION

The motion planning problem for a linear, Gaussian
stochastic system in an uncertain environment was for-
mulated as an optimal control problem. The program
was shown to be nonconvex and consequently only a lo-
cally optimal solution can be guaranteed. However, the
allowed probability of constraint violation is ensured to
be below the pre-defined threshold. This threshold is a
tuning parameter which trades-off the performance and
the conservativeness of the solution.
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