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Abstract— This paper considers the problem of motion plan-
ning for linear, Gaussian systems, and extends existing chance
constrained optimal control solutions [1], [2] by incorporating
the closed-loop uncertainty of the system and by reducing
the conservativeness in the constraints. Due to the imperfect
knowledge of the system state caused by motion uncertainty
and sensor noise, the constraints cannot be guaranteed to be
satisfied and consequently must be considered probabilistically.
In this work, they are formulated as convex constraints on
a univariate Gaussian random variable, with the violation
probability of all the constraints guaranteed to be below a
threshold. This threshold is a tuning parameter which trades
off the performance of the system and the conservativeness
of the solution. In contrast to similar methods, the proposed
work considers the specific estimator and controller used in
the closed-loop system in order to directly characterize the a
priori distribution of the closed-loop system state. Using this
distribution, a convex optimization program is formulated to
solve for the optimal solution for the closed-loop system. The
performance of the algorithm is demonstrated through several
examples.

I. INTRODUCTION

With the increasing demand for autonomous vehicles,
there is a pressing need for algorithms to plan trajectories
through complex environments. Several examples of projects
that require this technology are: search and rescue, recon-
naissance, surveillance, and disaster response. The general
motion planning problem involves generating a trajectory
that accomplishes a defined goal while operating under
specified system dynamics and constraints. There has been
a large amount of work in path planning for deterministic
systems, but not as much for stochastic systems; although
they have been receiving a great deal of attention in recent
years.

The world is full of disturbances whether it be in the
form of external sources, modeling errors or sensing noise;
therefore the exact system state is never truly known. Con-
sequently, in order to maximize the probability of success,
the planning problem must be performed in the space of
probability distributions of the system state, defined as the
belief space. For a stochastic system, however, planning
in the belief space is not enough to guarantee success
because there is always a small probability that a large
disturbance will be experienced. Therefore, a trade-off must
be made between the conservativeness of the plan and the
performance of the system.
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The problem of motion planning with motion noise, sens-
ing noise and environment uncertainty has been studied in
the past. Some previous planners [3], [4] account for the
motion uncertainty of the system but do not account for
the partial observability of the system state or the sensing
uncertainty. Others [5], [6], [7] [8] have included both
the motion and sensing uncertainty when planning paths
through the environment, but they simplify the problem by
assuming the maximum likelihood observation is received
for all future time-steps. This approximation results in an
inaccurate representation of the probability distribution of
the state which can lead to a violation of the constraints on
the system.

Another group of researchers formulated the problem as an
optimal control problem with constraints on the system state
referred to as chance constraints. In [9], they extended their
previous work to handle non-Gaussian belief distributions
by approximating it using a finite number of particles. This
transforms the original stochastic control problem into a
deterministic one that can be efficiently solved. This sam-
pling approach, however, becomes intractable as the number
of samples needed to fully represent the true belief state
increases. The work by Blackmore et al. [1] uses the work
presented in [10] to approximate the chance constraints using
Boole’s inequality which typically leads to a very small
amount of over-conservativeness. They also used the idea
of risk allocation introduced by [10] to distribute the risk
of violating each chance constraint while still guaranteeing
the specified level of safety. By using the risk allocation
technique instead of assuming a constant amount of risk for
each constraint, the performance of the overall system can
be significantly increased.

The work by van Hessem [2] optimized over the feedback
control laws and open-loop inputs while ensuring that the
chance constraints on the overall system are satisfied. They
used an ellipsoidal set bounding approach to convert the
stochastic problem into a deterministic one but this leads to a
conservative solution. Also, their results only hold in finite-
horizon (open-loop) execution and not in receding horizon
(closed-loop) [1].

The problem of planning with motion noise can alterna-
tively be handled by robust control techniques [11], [12].
Rather than using chance constraints, these methods assume
bounds on the unknown parameters which can be used to
formulate worst case bounds on the system state. However,
such an approach is conservative because it disregards the



information that is often available about the distribution of
the state uncertainty.

van den Berg et al. [13] characterized the probability
distributions of a system based upon a linear quadratic
regulator controller with Gaussian models of uncertainty.
They proposed a two step planning process: (1) a set of
candidate paths were generated without taking into account
the uncertainty of the system, (2) they selected the best path
based upon a criterion which incorporated the uncertainty of
the state. Since the uncertainty wasn’t taken into account
in generating the paths, the paths generated were often
suboptimal solutions.

This work is based on the material presented in [1], [2]
which formulates the motion planning problem as a chance
constrained optimal control problem. This work extends [1]
by accounting for the closed-loop uncertainty directly and
extends [2] by optimizing the risk allocation to reduce
the conservativeness of the solution. The authors’ previous
work [14] is also used if the constraints form a non-convex
region to decompose them into a set of convex constraints
which can be searched over to find the optimal solution.
The algorithm is demonstrated to be very fast and could be
applied in real-time or used to re-plan on-the-fly.

The paper proceeds as follows. Section II describes the
probabilistic problem formulation. Then, the explicit es-
timator and controller used in the closed-loop system is
formally presented in Section III. In Section IV, the a priori
uncertainty of the closed-loop system is derived which is
used in evaluating the chance constraints of the optimization
program presented in Section V. The final convex opti-
mization program is presented in Section VI, and several
examples are presented in Section VII which characterize
the performance of the algorithm. The paper concludes with
directions of future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N − 1], (1)

where xk ∈ Rn is the system state, wk ∈ Rn is the process
noise and N is the time horizon. The initial state, x0, is
assumed to be a Gaussian random variable with mean x̄0

and covariance Σ0 i.e., x0 ∼ N (x̄0,Σ0). At each time step,
a noisy measurement of the state is taken, defined by

yk = Cxk + vk, ∀k ∈ [1, N ], (2)

where yk ∈ Rp and vk ∈ Rp are the measurement output and
noise of the sensor at time k, respectively. The process and
measurement noise have zero mean Gaussian distributions,
wk ∼ N (0,Σw) and vk ∼ N (0,Σv). The process
noise, measurement noise and initial state are assumed to be
mutually independent. For notational convenience, the state
and control inputs for all time-steps are concatenated to form,
X =

[
xT

1 . . . xT
N

]T
and U =

[
uT

0 . . . uT
N−1

]T
.

The control inputs are required to be in a convex region
denoted by FU and the system state is restricted to be in a
feasible region denoted by FX . The optimization program

that is being solved is shown in Program P2.1 which is
a general belief space planning problem. The objective
function, f(·), is assumed to be a convex function in X and
U.

Path Planning Problem

minimize E (f(X,U))
subject to

xk+1 = Axk +Buk + wk, ∀k ∈ [0, N−1]
yk = Cxk + vk, ∀k ∈ [1, N ]
wk ∼ N (0,Σw), ∀k ∈ [0, N−1]
vk ∼ N (0,Σv), ∀k ∈ [1, N ]
U ∈ FU
P(X /∈ FX) ≤ δ

(P2.1)

The difficulty in solving the optimization program P2.1
is in evaluating the chance constraints: P(X /∈ FX) ≤ δ.
The complexity arises from characterizing the probability
distribution of the system state at each time-step and evalu-
ating the multivariate integrals over the feasible region. The
closed-loop probability distribution is even more difficult
since the properties of the estimator and controller need to
be taken into account. Consequently, the specific estimator
and controller used in the system need to be defined to
characterize the closed-loop uncertainty of the system which
will then be used to evaluate the chance constraints.

III. SYSTEM DESCRIPTION

The problem formulation in Program P2.1 is independent
of the type of estimator and controller that is used in the
actual system. In this work, a Kalman filter is used as the
estimator and the system is controlled via a linear quadratic
trajectory controller.

A. Kalman Filter

For a linear, Gaussian system, the Kalman filter is the
minimum mean square error estimator and is used to estimate
the mean and uncertainty of the system state. Let Σ̂k|k−1

be the covariance matrix of the optimal estimate of xk
given the measurements {y1, . . . , yk−1} and let Σ̂k|k be
the covariance matrix of the optimal estimate of xk given
the measurements {y1, . . . , yk}. The Kalman filter operates
through the following recursion. The process update is,

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (3)

Σ̂k|k−1 = AΣ̂k−1|k−1A
T + Σw. (4)

The measurement update is,

x̂k|k = x̂k|k−1 + Lk
(
yk − Cx̂k|k−1

)
(5)

Σ̂k|k = (I − LkC) Σ̂k|k−1 (6)

where I ∈ Rn×n is the identity matrix and

Lk = Σ̂k|k−1C
T
(
CΣ̂k|k−1C

T + Σv

)−1

. (7)



One of the key properties of the Kalman filter is that the
covariance, Σ̂k|k, can be pre-computed before any measure-
ments are received which allows the uncertainty of the state
to be utilized in the path planning process.

B. Linear Quadratic Trajectory Control

Given perfect state information, the linear quadratic con-
troller minimizes the following cost function,

J = minimize
uk,∀k∈TN

N∑
τ=0

(
xτ − xdτ

)T
Q
(
xτ − xdτ

)
+

N−1∑
τ=0

uT
τRuτ ,

(8)
where xdk is the desired trajectory at time-step k. It can be
shown that the optimal input for the system in Eqn. (1) is
an affine function of the current state given by,

u∗k = Kkxk + gk (9)

Kk = −
(
R+BTPk+1B

)−1
BTPk+1A (10)

gk = −
(
R+BTPk+1B

)−1
BTqk+1 (11)

where Pk and qk are calculated via,

Pk = Q+ATPk+1A−
ATPk+1B

(
R+BTPk+1B

)−1
BTPk+1A

(12)

qk = (A+BKk)
T
qk+1 −Qxdk (13)

starting from PN = Q and qN = −QTxdN .

C. Linear Quadratic Gaussian

Given that there is process and measurement noise, the
exact value of the state xk is not known. Therefore only the
expectation of the cost function in Eqn. (8) can be minimized.
Fortunately, the certainty equivalence principle has been used
to show that the optimal controller for a linear, Gaussian
system with quadratic cost uses the estimate of the state from
a Kalman filter in Eqn. (9), i.e.,

u∗k = Kkx̂k|k + gk. (14)

IV. A PRIORI DISTRIBUTION OF THE CLOSED-LOOP
STATE AND CONTROL INPUT

Now that the estimator and controller have been defined,
the probability distribution of the closed-loop system state,
X, can be formulated which is required to evaluate the chance
constraints, P(X /∈ FX) ≤ δ.

Applying the methodology developed in [13], the closed-
loop uncertainty of the system state can be characterized a
priori before any measurements are received. Given the as-
sumption of the Kalman filter estimator and linear quadratic
trajectory tracking controller, the true system evolves accord-
ing to,

xk+1 = Axk +B(Kkx̂k|k + gk) + wk, ∀k ∈ [1, N ], (15)

and the estimate of the system state evolves according to,

x̂k+1|k+1 = Ax̂k|k +B
(
Kkx̂k|k + gk

)
+

Lk+1

(
yk+1 − Cx̂k+1|k

)
.

(16)

Substituting in for yk+1 and x̂k+1|k from Eqns. (2) and (3)
into Eqn. (16) yields,

x̂k+1|k+1 = Ax̂k|k +B
(
Kkx̂k|k + gk

)
+

Lk+1

[
C
(
Axk +B(Kkx̂k|k + gk) + wk

)
+

vk+1 − C
(
Ax̂k|k +B

(
Kkx̂k|k + gk

))]
.
(17)

Finally, simplifying and collecting the common terms results
in,

x̂k+1|k+1 = (A+BKk − Lk+1CA) x̂k|k + Lk+1CAxk+
Bgk + Lk+1Cwk + Lk+1vk+1.

(18)
Combining xk+1 and x̂k+1|k+1 from Eqns. (15) and (18)

into a single system results in the following time-varying
system,

zk+1 = Fkzk + B̄gk +Gksk (19)

where

zk =

[
xk
x̂k|k

]
, sk =

[
wk
vk+1

]
B̄ =

[
B
B

]
,

Fk =

[
A BKk

Lk+1CA A+BKk − Lk+1CA

]
,

Gk =

[
I 0

Lk+1C Lk+1

]
(20)

with sk ∼ N (0,Σs), Σs = diag (Σw,Σv) and diag places
the matrices along the diagonal. The system starts from
z0 =

[
xT

0 x̄T
0

]T
. The mean, z̄k, and covariance, Mk,

for the system defined by Eqn. (19) can now be determined,

z̄k+1 = Fkz̄k + B̄gk (21)

Mk+1 = FkMkF
T
k +GkΣsG

T
k, (22)

starting from z̄0 =

[
x̄0

x̄0

]
and M0 =

[
Σ0 0
0 0

]
. Finally,

the closed-loop state and control input evolves according to,[
xk
uk

]
=

[
I 0
0 Kk

]
︸ ︷︷ ︸

Λk

[
xk
x̂k|k

]
+

[
0
I

]
gk. (23)

Consequently, the a-priori closed-loop state and control input
at time-step k, ∀k ∈ [1, N − 1], is distributed by,[
xk
uk

]
∼ N

([
T xxk x̄0 + T xgk g

Kk(T xxk x̄0 + T xgk g) + gk

]
,ΛkMkΛT

k

)
(24)

where g =
[
gT

0 . . . gT
N−1

]T
. The k-th row of the matrix

T xx is,

T xxk =

k−1∏
τ=0

(A+BKτ ) (25)

and the elements of the matrix T xg are,

T xgij =


0 if j > i
B if j = i

(
∏i
τ=j+1(A+BKτ ))B otherwise

(26)

Let Xd and Q be defined as: Xd =
[
xd1

T
. . . xdN

T
]T

and Q =
[
qT
1 . . . qT

N

]T
. The constant input term



in Eqn. (14) can be defined as a function of Q, i.e.,
g = Ψ Q where Ψ is a block diagonal matrix with entries
Ψii = − (R + BTPi+1B)−1BT, ∀i ∈ [0, N − 1]. Also,
the vector q can be written in terms of the desired trajectory,
Q = ΦXd where Φ is defined as ∀i, j ∈ [0, N − 1],

Φij =


0 if j < i
−QT if j = i

−(
∏j
τ=i+1(A+BKτ )T)QT otherwise.

(27)

Consequently, the mean of the closed-loop state is,

X̄ = T xxx̄0 + T xxdXd (28)

where T xxd = T xgΨΦ. The mean of the control inputs is,

Ū = Tux0 x̄0 + TuxdXd (29)

with Tux0 = K̃T xx +

[
K0

0

]
, Tuxd =

(
K̃T xx

d

+ ΨΦ
)

,

and K̃ is a block matrix with [K1, . . . ,KN−1] on the lower
off-diagonal.

V. CHANCE CONSTRAINTS

Using the probability distribution of the system state
formulated in the previous section, the chance constraints,
P(X /∈ FX) ≤ δ, in Program P2.1 can be evaluated
efficiently once the multivariate integrals over the feasible
region are simplified.

A. Univariate Gaussian Constraints

While the state chance constraints may first appear to be
easy to evaluate, they require the integration of a multivariate
Gaussian density which does not have an analytic solution.
In [9], a sampling strategy was exploited to evaluate the
integral, but this is computationally expensive because it
requires a large number of samples for the required accuracy.
Fortunately, [10], [1] showed that the multivariate integrals
can be converted into univariate integrals which can be
evaluated efficiently.

For simplicity, the feasible region FX is assumed to be
convex (although non-convex regions can be handled by
convexifying the space and using branch and bound in
an outer-loop). Given this assumption, the feasible region
can be defined by a conjunction of NFX

linear inequality
constraints,

FX ,

NFX⋂
i=1

{
X : aT

iX ≤ bi
}

(30)

where ai ∈ RnN and bi ∈ R. By using Boole’s inequality, the
original chance constraint P(X /∈ FX) can be conservatively
approximated. Boole’s inequality states that for a countable
set of events E1, E2, . . ., the probability that at least one
event happens is no larger than the sum of the individual
probabilities,

P

(⋃
i

Ei

)
≤
∑
i

P (Ei) . (31)

Consequently, from Eqn. (30) and Boole’s inequality the
probability of the state not being contained inside the feasible
region is bounded by,

P(X /∈ FX) = P

(
X ∈

NFX⋃
i=1

{
X : aT

iX > bi
})

≤
∑NFX
i=1 P(aT

iX > bi).

(32)

From Eqns. (24) and (28) the closed-loop state is a Gaussian
random variable defined by,

X ∼ N
(
X̄,M

)
(33)

where M = diag(ĨTM1Ĩ , . . . , Ĩ
TMN Ĩ) and Ĩ = [I 0]

T.
Now that the multivariate constraints have been converted

to univariate constraints in Eqn. (32), they can be efficiently
evaluated through,

P(aT
iX > bi) = P(yi > bi)

=
1√

2πaT
iMai

∫ ∞
bi

exp(− (yi − aT
i X̄)2

2aT
iMai

)dyi

=
1√
2π

∫ ∞
bi−aT

i
X̄√

aT
i
Mai

exp(−z
2

2
)dz

= 1− normcdf(
bi − aT

i X̄√
aT
iMai

).

(34)
The function normcdf(·) is the Gaussian cumulative distri-
bution function,

normcdf(x) =
1√
2π

∫ x

−∞
exp(−z

2

2
)dz. (35)

Although the normcdf(·) function does not have an analytic
solution, it can be efficiently evaluated using a series approx-
imation or a pre-computed lookup table.

B. Gradient and Hessian

The gradient and Hessian of the probability constraints can
also be computed analytically to aid in the solution of the
optimization problem. First, the gradient will be computed
for one probability constraint and then generalized for all.
From the chain rule,

∇xdP
(
aT
iX > bi

)
=
∂P
(
aT
iX > bi

)
∂X̄

∇xdX̄. (36)

From Eqn. (34) and the Leibniz integral rule,

∂P
(
aT
iX > bi

)
∂X̄

= −
∂normcdf(

bi − aT
i X̄√

aT
iMai

)

∂X̄
=

1√
2πaT

iMai
exp(− (bi − aT

i X̄)2

2aT
iMai

)aT
i .

(37)
The gradient of X̄ with respect to xd is ∇xdX̄ = T xxd.
Combining the individual gradients into vector notation
yields,

gc = T xxd
T
Acφ (38)



where φ is defined as a vector with elements,

φi =
1√

2πaT
iMai

exp(− (bi − aT
i X̄)2

2aT
iMai

), (39)

and Ac = [a1, . . . , aNFX
]. The Hessian of the probability

constraints is determined through a similar process. The
Hessian of one individual constraint is,

∇2
xd

P
(
aT
iX > bi

)
= diT

xxdTaia
T
i T

xxd (40)

where di =
bi − aT

i X̄√
2πaT

iMai
exp(− (bi − aT

i X̄)2

2aT
iMai

). The Hessian

of all the probability constraints in matrix form is then,

Hc = T xxd
T
Acdiag (d)AT

cT
xxd. (41)

VI. NEW OPTIMIZATION PROGRAM

Now that the distribution of the closed-loop system state
and the efficient evaluation of a single chance constraint have
been developed, the satisfaction of the overall probability
constraint, P(X /∈ FX) ≤ δ, needs to be addressed.
Previously, two methods have been proposed for this: fixed
risk [15] and risk allocation [10], [1].

The fixed risk method assigns a pre-defined allowed
probability of violation for each univariate constraint,
P(aT

iX > bi), such as δ/NFX
. This pre-defined probability

is chosen to ensure that the total probability of violation
is below the threshold δ. Since the allowed risk for each
constraint is known beforehand, the chance constraints can
be simplified by modifying the system’s feasible region at
each time-step.

The risk allocation method includes the allowed probabil-
ity of violation for each univariate constraint, P(aT

iX > bi),
as an optimization variable, εi. In order to ensure that the
total probability of violation is below the threshold, the
optimization variables are restricted by

∑
εi ≤ δ. For this

work, this risk allocation method was ultimately chosen as
it provided increased system performance with only slight
increases in computational complexity.

Using this risk allocation technique [10] along with the
distribution of the closed-loop state in Section IV and
the evaluation of the chance constraints in Section V, the
Program P2.1 can now be transformed into the optimization
Program P6.1.

minimize f(X̄, Ū)
subject to

X̄ = T xxx̄0 + T xxdXd
Ū = Tux0 x̄0 + TuxdXd
Ū ∈ FU
zi = bi − aT

i X̄, ∀i
σi = aT

iMai, ∀i
1− normcdf( zi√

σi
) ≤ εi, ∀i∑NFX

i=1 εi ≤ δ

(P6.1)

The convexity of program P6.1 can be shown by using
the results established by Prékopa for probabilistically con-
strained stochastic optimization programs with log-concave
measures [16] which is similarly used in [1] for the open-
loop control problem.

Given the convexity of problem P6.1 there are many well
known algorithms which can be used to solve for the globally
optimal solution. For this work, a custom log barrier method
with a Newton step was used. Also, the normcdf function
was evaluated using a pre-computed lookup table.

VII. EXAMPLES

A. Open-Loop Unstable

Since the formulation incorporates a feedback controller
instead of only designing the open-loop control inputs,
unstable systems can be handled as long as a linear quadratic
feedback law can stabilize the system.

For this example, the unstable system dynamics are,

A =

[
2.72 0
0.17 1

]
B =

[
0.17

7.2e− 3

]
C =

[
1 0
0 1

]
and the noise parameters are, Σw = 0.0001I and Σv =
0.0001I . The time horizon is N = 20 and the ini-
tial condition is assumed to be distributed according to

x0 ∼ N
([

0
0

]
, 0.0001I

)
. The feasible region, FX , is

defined by the following constraints,[
1 0

]
xk ≤ 1.05

[
−1 1

]
xk ≤ 0.3

for all k ∈ [1, . . . , N ]. The allowed probability constraint
violation is δ = 0.01. The objective function for this problem
is quadratic in the final state as well as the control inputs,

f(X̄, Ū) = (xN − xref )
T
Qobj (xN − xref ) + ŪTRobjŪ

(42)
with Qobj = I , Robj = 0.001I and xref =

[
1 1

]T
.

The solution for this example is shown in Figure 1 in
which the line is the trajectory of the system and the ellipses
are the 99.7% confidence ellipsoid at each time-step. The
optimal objective function for this problem is 0.045 and was
solved in 15 milliseconds. Figure 2 displays the constraint
violation probability at each time-step for the slanted line.
At the start of the trajectory, the system has a very low
chance of violating the constraints, but near the end the
probability of violation increases dramatically. This non-
uniform distribution of constraint violation probability is a
result of using the risk allocation algorithm, which in this
case has chosen to assign most of the allowable constraint
violation near the end of the trajectory. By using this risk
allocation algorithm, the performance of the system was
increased as compared with using a pre-defined risk profile.

B. Non-Convex Environments

If the feasible region, FX , is a non-convex region then
there are several ways to transform it into a series of convex
problems [14], [17]. The approach taken in the following
examples was to decompose the feasible region into convex
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Fig. 1. The solution for the unstable dynamics example. The blue circle is
the starting position of the state and the green ’x’ is the goal location. The
white area is the feasible region FX . The ellipses are the 99.7% confidence
regions of the state at each time-step.
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Fig. 2. The probability of violating the slanted line constraint for the
open-loop unstable example. The x-axis is the time-step and the y-axis is
the probability of violating the constraint.

tunnels which are then planned through. The system has
double integrator dynamics with a 2D position,

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


0.5∆t2 0
0 0.5∆t2

∆t 0
0 ∆t

 .
C =

[
1 0 0 0
0 1 0 0

]
(43)

where ∆t = 0.1 seconds and a time-horizon of N = 20. The
noise parameters are,

Σw = diag(0.0003, 0.0005, 0.0003, 0.0005)
Σv = diag(0.001, 0.002)

(44)

The objective function is the same as the previous example
in Eqn. (42) with xref =

[
2 1

]T
. The constraints that

exist for all the different paths from the start to the goal are,
1 0 0 0
0 1 0 0
−1 0 0 0
0 −1 0 0

xk ≤


2.2
2.75
0.15
0.15

 .
The feasible region can be decomposed into two different
tunnels corresponding to going to the top or bottom of the
first obstacle. Figure 3 shows the decomposition of the non-
convex region for the top and bottom paths.

A B

C

D E

F

H J

K

G

(a) (b)
Fig. 3. The decomposition of the non-convex space into tunnels corre-
sponding to the bottom path and top path in (a) and (b), respectively.

1) Bottom Region: The probability constraints for the
bottom region are,[

0 1 0 0
]
xk ≤ 0.15 ∀k ∈ [1, k1][

−1 0 0 0
1 0 0 0

]
xk ≤

[
−1.4
1.75

]
∀k ∈ [k1 + 1, k2][

0 −1 0 0
]
xk ≤ −0.75 ∀k ∈ [k2 + 1, N ]

where k1 and k2 are the switching times between the three
sets of constraints. The switching times corresponds when
the system exits one region, defined by the constraints, and
enters another. Corresponding to the regions in Figure 3(a),
the first inequality constrains the system to be in regions A
and B, the second inequality restricts the system to only be
in regions B, C and D, and the final constraint allows the
system to be in regions D and E.

2) Top Region: Similarly, the probability constraints for
the top region are,[

1 0 0 0
]
xk ≤ 0.15 ∀k ∈ [1, k1][

0 −1 0 0
]
xk ≤ −2 ∀k ∈ [k1+1, k2][

−1 0 0 0
0 −1 0 0

]
xk ≤

[
−1.4
−0.75

]
∀k ∈ [k2+1, N ]

where again k1 and k2 are the switching times between
the three sets of constraints. In reference to the regions in
Figure 3(b), the first inequality constrains the system to be in
regions F and G, the second inequality restricts the system
to only be in regions G, H and J, and the final constraint
allows to the system to be in regions J and K.

3) Results: For this example, the optimal path is always
through the top region even though the bottom region is
shorter. The bottom region is infeasible with respect to
the chance constraints if the allowed constraint violation
is δ < 0.19 which is caused by the large uncertainty of
the vertical position of the state. Figure 4(a) displays the
optimal solution for δ = 0.1 which travels through the top
region and the optimal switching times are k1 = 9 and
k2 = 16. The computed constraint violation from Monte
Carlo simulations was 0.095, and the conservativeness is
due to Boole’s inequality. Notice how the optimal solution
curves toward the infeasible region in the beginning instead
of following the center of the corridor. This initial deviation
improves the overall objective and is allowed because the
rest of the path has a small probability of violating the
constraints. Figure 4(b) shows a suboptimal solution through



the bottom region for an allowed constraint violation of 0.19.
The system follows the center of the corridor in the beginning
and waits to reach the goal location at the end to reduce the
probability of violating any constraints before the end of the
planning horizon.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

(a) (b)
Fig. 4. The results for planning through the non-convex region. The blue
line with dash-dot ellipses, orange line with dash ellipses, and green line
with solid ellipses indicate which three sets of constraints are active. (a)
The optimal path for a constraint violation of δ = 0.1 (b) Planning only
through the bottom path with an allowed constraint violation of δ = 0.19.

C. Collision Avoidance

For the final set of results, a dynamic non-convex example
is chosen in which the vehicles have to avoid each other
while attempting to reach their goal location. For each sce-
nario, all vehicles have the same double integrator dynamics
describe by Eqn. (43) with ∆t = 0.1 seconds, a time-horizon
of N = 20 and noise parameters given in Eqn. (44). In each
scenario, the vehicles where required to keep a minimum
separation distance of 0.25 meters, which by definition is a
non-convex feasible region. Consequently, the same approach
will be employed as in the previous section to simplify the
problem into convex subproblems.

The objective function for each of the collision avoidance
scenarios is,

f(X̄, Ū) =

NV∑
i=1

(
x̄iN − xiref

)T
Qobj

(
x̄iN − xiref

)
+ ŪTRobjŪ

with Qobj =

[
I 0
0 0

]
, Robj = 0.001I , x̄ik is the state mean

of vehicle i at the k-th time-step, xiref is the reference state
of vehicle i, and NV is the number of vehicles.

1) 2-vehicle: Due to the symmetric nature of the example,
the problem can be simplified while still retaining the optimal
solution. To this end, the vehicle which starts on the left
will be constrained to pass under the other vehicle. The
decomposed constraints are,

(a)
{[

1 0 0 0
]

(x1
k − x2

k) ≤ −0.25 ∀k∈ [1, k1]
(b)
{[

0 1 0 0
]

(x1
k − x2

k) ≤ −0.25 ∀k∈ [k1+1, k2]
(c)
{[

1 0 0 0
]

(x2
k − x1

k) ≤ −0.25 ∀k∈ [k2+1, N ]

where xik is the state of vehicle i at the k-th time-step with
i ∈ [1, 2]. The constraints require the vehicle’s position in
the x-direction, then y-direction and finally x-direction to
be greater than the required separation distance. Using this

decomposition the optimal solution will be achieved as long
as the optimal switching times k1 and k2 are determined,
which they can be through a simple brute force search.

The starting and goal locations for each of the vehicles are,
x1

0 =
[

0 0 0 0
]T

, x2
0 =

[
3 0 0 0

]T
, x1

ref = x2
0

and x2
ref = x1

0. Figure 5 shows the optimal solution with
k1 = 12 and k2 = 13. The smallest separation between the
two vehicles is 0.4 meters when they pass over each other
in the middle.
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Fig. 5. Two vehicle collision avoidance scenario. The orange and blue lines
represent the path of the two vehicles. The yellow solid, purple dash-dot,
and green dash-dash ellipses indicate which set of constraints are active,
(a), (b), (c), respectively.

2) 3-vehicle: The starting and goal locations for each
of the vehicles are x1

0 =
[
−0.87 0.5 0 0

]T
, x2

0 =[
0.87 0.5 0 0

]T
x3

0 =
[

2 0 0 0
]T

, x1
ref =[

0.5 1.87 0 0
]T

, x2
ref =

[
−0.5 1.87 0 0

]
and

x3
ref =

[
0 0 0 0

]T
. Due to the large number of

feasible trajectories through the environment, the allowed
feasible region was restricted to reduce the computation
time. Consequently, only a locally optimal solution can be
guaranteed but it is the optimal solution within the restricted
feasible region. The decomposed regions are defined by,

(a)


[

1 0 0 0
]

(x1
k − x2

k) ≤ −0.25 ∀k∈ [1, k1][
0 1 0 0

]
(x1
k − x3

k) ≤ −0.25[
0 1 0 0

]
(x2
k − x3

k) ≤ −0.25

(b)


[

0 1 0 0
]

(x1
k − x2

k) ≤ −0.25 ∀k∈ [k1+1, k2][
1 0 0 0

]
(x3
k − x1

k) ≤ −0.25[
1 0 0 0

]
(x3
k − x2

k) ≤ −0.25

(c)


[

0 1 0 0
]

(x3
k − x1

k) ≤ −0.25 ∀k∈ [k2+1, N ][
0 1 0 0

]
(x3
k − x2

k) ≤ −0.25[
1 0 0 0

]
(x2
k − x1

k) ≤ −0.25

where again k1 and k2 are the times when the vehicle exits
and enters the different regions. In words the constraints are
as follows: (a) requires vehicle 3 to be above vehicles 1,
2 and vehicle 1 to be to the left of vehicle 2, (b) requires
vehicle 3 to be to the left of vehicles 1, 2 and vehicle 2 is
above vehicle 1, (c) requires vehicle 3 to be below vehicles
1, 2 and vehicle 2 is to the left of vehicle 1.

Figure 6 shows a series of images of the vehicle locations
for the expected trajectories for a problem with an allowed
constraint violation of δ = 0.1. For each of the subplots in the
figure, the system is in regions (a),(b),(b),(c), respectively, of
the decomposed environment. Statistics for the two and three
vehicle collision avoidance examples are shown in Table I.
As the allowed constraint violation increases, the perfor-
mance of the system increases as expected. The table also
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Fig. 6. A three vehicle collision avoidance scenario with an allowed constraint violation of δ = 0.1. In each plot, the vehicles are attempting to reach
their goal location marked by the ‘x’.

shows the simulated constraint violation for each scenario,
and due to the approximation from Boole’s inequality the
solutions are slightly conservative.

TABLE I
A COMPARISON OF THE SOLUTION STATISTICS AND COMPUTATION TIME

FOR THE TWO AND THREE VEHICLE COLLISION AVOIDANCE EXAMPLES.

# Vehicles δ δsim Sol. Time (sec.) f∗ k1 k2
2 0.001 9.2e-4 9.5 0.093 11 13
2 0.01 0.009 8.9 0.087 11 13
2 0.1 0.096 9.6 0.078 12 13
3 0.001 9e-4 29.3 0.1582 9 16
3 0.01 9.9e-3 30.1 0.1311 9 15
3 0.1 0.083 30.5 0.1061 10 15

VIII. CONCLUSIONS

The motion planning problem for a linear, Gaussian
stochastic system with system state constraints was for-
mulated as an optimal control problem. The near-optimal
solution was obtained by solving a conservative convex
optimization problem that restricted the probability of con-
straint violation for the closed-loop system to be below a
pre-defined threshold. This threshold is a tuning parameter
which trades-off the performance the conservativeness of the
solution.

There are several interesting areas of future work that the
authors wish to explore. This work could be used as the basis
for developing heuristics to solve for locally optimal policies
for more complex systems such as nonlinear dynamics and/or
nonlinear sensors. Another area of future work would be to
apply the algorithm online in a receding horizon fashion.
While the constraints would only be guaranteed to hold
for the finite horizon case, the performance of the system
would be increased by using the a posterior distribution of
the system state online. Lastly, the authors wish to apply
these algorithms to actual systems performing tasks such
as collision avoidance, multiagent perception, search and
rescue, and environment discovery.
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