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Abstract— This paper introduces a novel hybrid method
for solving a stochastic control problem for linear, Gaussian
systems through uncertain environments. Due to the imperfect
knowledge of the system state caused by motion, sensor and
environment uncertainty, the system constraints cannot be
guaranteed to be satisfied and consequently must be considered
probabilistically. Due to the environmental uncertainty, the
constraints are sums of products of random variables which
do not have a closed-form analytical expression. Previous
approaches have either approximated the distribution leading
to a nonconvex optimization program, or used sampling alone
to represent the uncertainty which requires a large number of
samples to accurately represent the distribution. To address
these limitations, a novel hybrid method is proposed that
uses both analytical functions and sampling to represent the
uncertainty. It is shown that under certain conditions, the
resulting optimization program is convex. Also, this method
drastically reduces the computational complexity over previous
methods, which is demonstrated through an example.

I. INTRODUCTION

For many systems, it is desired to determine a control
strategy to complete an objective while satisfying a set
of constraints, however, in many circumstances there is
noise in the system that can cause the constraints to be
violated. Furthermore, the constraint parameters could also
be uncertain which significantly increases the complexity in
determining this control strategy. Therefore, the problem of
interest in this paper is how to efficiently solve the stochastic
control problem with uncertain constraint parameters.

There are many applications that could benefit from this
capability including robot-assisted surgery, energy efficient
control of buildings, chemical process control, financial en-
gineering, autonomous control of vehicles, robotic assistance
for elderly and disabled people, routing aircraft around
weather, and home automation for tasks.

The uncertainty in the previous applications arise from
three different sources: (i) process uncertainty, (ii) sensing
uncertainty and (iii) environment uncertainty. The presence
of these uncertainties means that the exact system state
is never truly known. Consequently, in order to maximize
the probability of success, the control problem must be
performed in the space of probability distributions of the
system, defined as the belief space. For a stochastic system,
however, planning in the belief space is not enough to
guarantee success because there is always a small probability
that a large disturbance will be experienced causing the
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system to violate the constraints. Therefore, a trade-off must
be made between the conservativeness of the solution and
the performance of the system.

Charnes, Miller and Wagner [1] introduced the problem
of chance constrained programming which only guarantees
constraint satisfaction up to a specified probability limit.
A thorough account of existing literature employing this
problem formulation is given in [2].

A group of researchers used the chance constrained
programming formulation to model the planning problem
as an optimal control problem. The work in [3] utilized
Boole’s inequality to bound the chance constraints, typically
resulting in a very small amount of over-conservativeness.
They also used the idea of risk allocation introduced by [4]
to distribute the risk of violating each chance constraint
while still guaranteeing safety. The work in [5] optimized
over the feedback control laws and open-loop inputs while
ensuring that the chance constraints on the overall system
were satisfied. He used an ellipsoidal relaxation technique to
convert the stochastic problem into a deterministic one, but
this leads to a conservative solution. Vitus and Tomlin [6]
reduced the conservatism by using Boole’s inequality and
proposed an efficient iterative two stage optimization scheme.

Incorporating environment uncertainty into the motion
planning problem has also received some attention. Vitus
and Tomlin [7] studied the problem of belief space planning
for linear, Gaussian systems in uncertain environments. They
formulated the problem as a chance constrained optimization
problem, and showed the probability of colliding with polyg-
onal obstacles can be accurately approximated by a Gaussian
distribution; however, this leads to a nonconvex optimization
program. Du Toit and Burdick [8] investigated obstacle
avoidance in dynamic, uncertain environments, and proposed
an approximation method for calculating the probability
of collision for a spherical robot and obstacle distributed
via a Gaussian distribution. Missiuro and Roy [9] handled
uncertain environments by modifying the sampler used in
a probabilistic roadmap. However, while the algorithm ac-
counts for the environment uncertainty, motion noise or
sensing noise is not accounted for.

This work extends previous chance constrained program-
ming formulations to solve the stochastic control problem
in uncertain environments. Given the uncertainty in the con-
straint parameters, the probabilistic constraints on the system
state are shown to be distributed via the sums of products
of random variables. In general the constraint expression
does not have a closed-form analytical expression and re-
quires the evaluation of multivariate integrals. To reduce the



computational complexity over previous approaches, a novel
hybrid method is proposed that uses both analytical functions
and sampling to represent the uncertainty in the system
and environment. It is shown that under certain conditions,
the resulting optimization program is convex. By using
this dual representation, the computational complexity was
drastically reduced by 30-110 times over previous methods.
Consequently, this method has the ability to enable real-time
stochastic control for the motivating applications.

The paper proceeds as follows. Section II describes the
probabilistic problem formulation. Then, two previous meth-
ods for handling the chance constraints are presented Sec-
tion III. In Section IV, the hybrid method is presented and
an example is presented in Section V which characterizes
the performance of the algorithm.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,
xk+1 = Axk +Buk + wk, k = 0, . . . N − 1, (1)

where xk ∈ Rn is the system state, wk ∈ Rn is the process
noise and N is the time horizon. The initial state, x0, is
assumed to be a Gaussian random variable with mean x̄0
and covariance Σ0 i.e., x0 ∼ N (x̄0,Σ0). At each time step,
a noisy measurement of the state is taken, defined by

yk = Cxk + vk, k = 1, . . . N, (2)
where yk ∈ Rp and vk ∈ Rp are the measurement output and
noise of the sensor at time k, respectively. The process and
measurement noise have zero mean Gaussian distributions,
wk ∼ N (0,Σw) and vk ∼ N (0,Σv). The process
noise, measurement noise and initial state are assumed to be
mutually independent. For notational convenience, the state
and control inputs for all time-steps are concatenated to form,
X =

[
xT
1 . . . xT

N

]T
and U =

[
uT
0 . . . uT

N−1
]T

,
and X̄, Ū refer to the mean of the state and control inputs.

The control inputs are required to be in a convex region
denoted by FU and the system state is restricted to be in a
feasible region denoted by FX . To simplify the presentation
of the material, the feasible region FX is assumed to be con-
vex. Nonconvex regions can still be handled, however, either
by (i) performing branch and bound on the set of conjunction
and disjunction linear state constraints directly [10], or by (ii)
decomposing the space into convex regions and using branch
and bound to determine when to enter/exit each convex
subregion [11]. Given this assumption, the feasible region
can be defined by a conjunction of NFX linear inequalities,

FX ,

NFX⋂
i=1

{
X : hT

iX ≤ bi
}

(3)

where hi ∈ RnN and bi ∈ R. In this work, the environment
is uncertain but the parameters of the probability distribution
describing hi and bi are assumed to be known.

In this formulation, the design variables are the control
inputs for the system. They can be specified directly as the
open-loop values or generated through a linear trajectory
controller with the desired trajectory as the design variable.
In either case, the distribution of the closed-loop system can
be calculated a priori and is given by a Gaussian distribution,

X ∼ N
(
X̄,ΣX

)
. (4)

The general belief space planning problem is posed as the
optimization program (5). The optimization variables are the
control inputs for the system. The objective function, f(·),
is assumed to be a convex function in X and U.

minimize E [f(X,U)]
subject to

xk+1 = Axk +Buk + wk, k = 0, . . . N − 1
yk = Cxk + vk, k = 1, . . . N
wk ∼ N (0,Σw), k = 0, . . . N − 1
vk ∼ N (0,Σv), k = 1, . . . N
Ū ∈ FU
P(X /∈ FX) ≤ δ

(5)
The difficulty in solving the optimization program (5) is

in evaluating and satisfying the joint chance constraints:
P(X /∈ FX) ≤ δ. The complexity arises from evalu-
ating the multivariate integrals over the uncertain state and
environment to calculate the desired probability of failure.
In particular, by allowing H and b to be uncertain, the
distribution of HTX−b becomes a sum of multiple products
of random variables which in general results in a nonconvex
optimization program. In addition, the properties of the prob-
ability distribution for this constraint are not easy to calculate
analytically, increasing the complexity of the problem. The
following two sections describe three approaches to deal with
such uncertain constraint parameters.

III. CHANCE CONSTRAINTS

The primary focus of most previous chance constrained
problem formulations was handling uncertainty in the sys-
tem. In this work the constraint parameters are also un-
certain which drastically increases the complexity. In the
first method, the constraints are approximated by a Gaussian
distribution, but this leads to a nonconvex optimization
problem which does not guarantee the optimal solution. The
second approach upper bounds the original chance constraint
by a convex function and uses sampling to calculate the value
of the bound. While this approach is useful for handling
arbitrary probability distributions, it usually requires a large
number of samples resulting in a large computational com-
plexity. These two methods will be further developed in the
following subsections.

A. Gaussian Approximation using Boole’s Inequality
In [7], we proposed to use Boole’s inequality to bound

the multivariate chance constraint by the summation of a set
of univariate constraints. Boole’s inequality states that for
a countable set of events E1, E2, . . ., the probability that
at least one event happens is no larger than the sum of
the individual probabilities P (

⋃
iEi) ≤

∑
i P (Ei). Conse-

quently, from Eqn. (3) and Boole’s inequality the probability
of the state not being contained inside the feasible region is
bounded by,

P(X /∈ FX) = P

(
X ∈

NFX⋃
i=1

{
X : hT

iX > bi
})

≤
∑NFX
i=1 P(hT

iX > bi).

(6)



By allowing hi and bi to be uncertain, the distribution
of
∑nN
j=1 hijXj − bi is now a sum of multiple products of

random variables, which does not have an analytical expres-
sion. Fortunately, the work of [7] showed the true distribution
can be accurately approximated by a Gaussian distribution
to allow the efficient evaluation of the constraints,

P(hT
iX− bi > 0) =

1√
2π

∫ ∞
b̄i−h̄T

i
X̄

σi

exp

(
−z

2

2

)
dz

= 1− Φ

(
b̄i − h̄T

i X̄
σi

) (7)

where Φ(·) is the Gaussian cumulative distribution function
and σ2

i = var(hT
iX − bi). Using a risk allocation technique

for each of the univariate constraints (P(hT
iX > bi)) yields

the final set of constraints for this method:

1

Ns

∑Ns
j=1

(
1− Φ

(
b̄i − h̄T

i X̄
σi

))
≤ εi,∀i∑

εi ≤ δ.
(8)

Unfortunately, for this approach the resulting optimization
program is nonconvex [7] and therefore only a locally
optimal solution can be guaranteed. Also, this method has a
large computational complexity which will prevent applying
this technique in real-time control applications.

B. Convex Bounding Method
Another approach to handling the uncertainty in the con-

straint parameters is the convex bounding method developed
by [12], [13]. Since the probability distribution of the chance
constraints may not be a convex function, it is difficult to
include them in the optimization program. This method finds
a suitable conservative, convex approximation for the proba-
bility distribution of the chance constraints which results in
a convex optimization program.

Consider a single individual chance constraint of the form

P
(
hT
iX− bi > 0

)
≤ δi. (9)

The probability in Eqn. (9) can be calculated via

P
(
hT
iX− bi > 0

)
= E

[
1
(
hT
iX− bi

)]
(10)

where 1(·) is the indicator function defined as

1(z) =

{
1, if z > 0
0, otherwise. (11)

Since the indicator function 1(z) is a nonconvex func-
tion, this greatly complicates the evaluation of the chance
constraints in the optimization problem (5). However, the
intuition behind this method is that by bounding the indicator
function by a convex function the optimization program
simplifies to a convex program.

Suppose such a nonnegative, nondecreasing, convex func-
tion ψ : R → R can be found such that for any α > 0,
ψ(z/α) ≥ 1(z) for all z then

E
[
ψ
((
hT
iX− bi

)
/α
)]
≥ P

(
hT
iX− bi > 0

)
. (12)

Consequently, if the following convex constraint is satisfied,
then the original chance constraint in Eqn. (9) is guaranteed
to hold:

E
[
ψ
((
hT
iX− bi

)
/α
)]
≤ δi. (13)

z

(z + 1)+(z + 1)2+
exp(z)

1(z)
1

Fig. 1. A comparison of several convex bounds that can be used to
approximate the indicator function 1(z). The functions (z + 1)+, exp(z),
and (z + 1)2+ (where + denotes max{z + 1, 0}) are represented as the
green, purple and orange lines respectively.

Note, the constraint in Eqn. (13) holds for any α, and
the conservativeness can be reduced by including α as an
optimization variable. To handle joint chance constraints, the
maximum over all constraint violations can be used in the
convex bounding function, i.e.,

E
[
ψ
(
max

(
HTX− b

)
/α
)]
≤ δ. (14)

Now that the form of the convex constraint used to bound
the original chance constraint has been formulated, the next
step is to determine what form of function to use for ψ. The
restrictions on the function, as stated previously, are that it
needs to be a convex function and ψ(z) ≥ 1(z) for all z.
Several examples of possible functions are shown in Figure 1.

In this work, the functional form for ψ(z) used is ψ(z) =
(z + 1)+ (where the subscript + denotes max{z + 1, 0})
because it results in the least conservative bound. The final
convex constraint that bounds the original chance constraint
is then:

E
[(

max
(
HTX− b

)
+ α

)
+

]
≤ αδ. (15)

Unfortunately, there is no analytical, closed-form solution
to calculate the expectation in Eqn. (15), however, it can be
efficiently approximated through sampling. One advantage
of this is that sampling can represent arbitrary distributions
for the uncertainty in the system, which inherently handles
the increased complexity of having uncertain constraint pa-
rameters.

To evaluate the expectation, Ns particles are drawn at each
time-step from the process noise, measurement noise, initial
state, and uncertainty constraint parameters to obtain the sets

{w(1)
0 , . . . , w

(1)
N−1, . . . , w

(Ns)
0 , . . . , w

(Ns)
N−1},

{v(1)0 , . . . , v
(1)
N−1, . . . , v

(Ns)
0 , . . . , v

(Ns)
N−1},

{x(1)0 , . . . , x
(Ns)
0 },

{H(1), . . . ,H(Ns)},
{b(1), . . . , b(Ns)}.

(16)

In order to use the convex bounding method, the expectation
in Eqn. (15) is not only over the system state but also over the
uncertain constraint parameters. To calculate the expectation,
each system trajectory particle X(j) is associated with a set
of constraint parameters H(j) and b(j) for all j = 1, . . . , Ns
as follows

E
[(

max
(
HTX− b

)
+ α

)
+

]
≈

1

Ns

∑Ns
j=1

(
max

(
H(j)TX(j) − b(j)

)
+ α

)
+
.

(17)



While this approach inherently handles the uncertainty in
the system and constraint parameters, for some problems it
might result in a large optimization program due to having to
use an increased number of samples to accurately represent
the underlying distribution. This will be illustrated in the
following subsection.

C. Stochastic Motion Planning Example

The following example will motivate the need to develop
a new method for handling problems with environmental
uncertainty. The system has double integrator dynamics with
∆t = 0.1 seconds and a time-horizon of N = 20. The
state is composed of the positions followed by the velocities,
and the measurement is of the position. where ∆t = 0.1
seconds and a time-horizon of N = 20. The noise parameters
are Σw = diag(0.0003, 0.0005, 0.0003, 0.0005) and Σv =
diag(0.001, 0.002), where diag places the elements along
the diagonal. The allowed probability constraint violation
is δ = 0.005. The objective function for this problem is
quadratic in the final state as well as the control inputs,

f(X̄, Ū) = (xN − xref)
T
Qobj (xN − xref) + ŪTRobjŪ (18)

with Qobj = 50I , Robj = 0.001I and xref =[
2 1 0 0

]T
.

For this example, the environment is defined by a set of
half plane constraints defined by a series of end points, which
are assumed to be uncertain. The uncertainty is modeled by
a truncated Gaussian represented as the orange ellipses in
Figure 2.
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Fig. 2. Results for the Gaussian approximation method and the convex
bounding method with ten realizations of the uncertain walls. The white
area is the feasible region of the system state and the orange ellipses are
the uncertainty of the environment. The blue, solid line is the solution when
accounting for the uncertainty of the environment and the green, dotted
line plans through the mean environment. The blue ellipses around the path
indicate the uncertainty of the system. The start and goal location are marked
by an ‘o’ and ‘x’, respectively. (a) The Gaussian approximation solution
using Boole’s inequality. (b) The solution using the convex bounding method
with 1500 particles and their trajectories are shown as the gray lines.

The solution for this example is shown in Figure 2(a)-
(b) for Boole’s method and the convex bounding method,
respectively. The blue, solid line is the trajectory of the sys-
tem when accounting for the uncertainty of the environment,
and the green, dotted line is the solution when planning only
through the mean environment. The blue ellipses show the
99.7% confidence ellipsoid of the system state at each time-
step. For this example, the optimal path is always through
the top region, even though the bottom region is shorter.

The bottom region is infeasible with respect to the allowed
constraint violation because of the large uncertainty of the
vertical position of the state.

There are several interesting differences between the so-
lution that accounts for the uncertainty and the solution
through the mean environment. The solution from the mean
environment initially curves toward the wall with large
uncertainty, but when the uncertainty of the environment is
incorporated the system deviates away from it. The more
noticeable difference between the two solutions in the top
region of the environment. The solution which accounts for
the uncertainty of the environment stays lower to avoid the
highly uncertain top wall.

The Gaussian approximation and convex bounding meth-
ods can be compared by their conservativeness and their
computational complexity. The estimated true probability of
constraint violation using Monte Carlo simulation for the
Gaussian approximation method and the convex bounding
method is 0.0038 and 0.0047. The Gaussian approximation
method is the most conservative due to the approximation
from Boole’s inequality. In particular, Boole’s inequality
doesn’t account for the dependence between the state at
different time-steps violating the constraints. Consider a wall
whose uncertainty is purely translational. If at one time-step
the system doesn’t violate the constraint, then the system will
also not violate the constraint for any future motion parallel
to the wall. Using Boole’s inequality to bound the probability
ignores this dependency.

All computations were done using Matlab on a 2.7 GHz
Intel Core i7. The Gaussian approximation method was
solved using Matlab’s fmincon with an interior point
solver, and the convex bounding method was solved us-
ing CVX [14]. In terms of computational complexity, the
Gaussian approximation solution takes 61.2 seconds and the
convex bounding method uses 1500 particles and takes 286.1
seconds. Given the large computational complexity, neither
of these methods have the potential of being applied for real-
time control for the motivating applications.

The two approaches presented thus far for handling uncer-
tain constraint parameters either approximate the constraints’
probability distribution analytically or use sampling. These
methods either result in a nonconvex optimization program
or had a large computational complexity. To overcome these
difficulties, the following section will present a novel hybrid
method that results in a convex optimization program under
certain conditions and drastically reduces the computational
complexity over the prior approaches.

IV. HYBRID METHOD

Given the limitations of the previous approaches for
handling the uncertain constraint parameters, this section
presents a novel hybrid approach that uses a combination of
analytical functions and sampling to represent the probability
distributions. In particular, for some problem formulations,
the stochastic variables are naturally separable into two sets:
one set that can be accurately represented through an analytic
function, and another set whose distribution is best repre-



sented through sampling. This section develops this hybrid
method, discusses how to handle the joint chance constraints,
and shows that the resulting optimization program is convex
under certain conditions.

The intuition behind this method comes from examining
the previous methods. Analytical approaches that use Boole’s
inequality have been very successful for solving problems
involving only system uncertainty. Their advantage is the
ability to efficiently calculate the chance constraint, but
adding environmental uncertainty significantly increases the
complexity due to the multiplicative constraints. For the
convex bounding method, the use of sampling enables han-
dling arbitrary probability distributions but it may require a
large number of samples. By combining both approaches, the
multiplicative constraints may be eliminated while reducing
the required number of samples.

In the following development of the hybrid method,
sampling is used to represent the uncertain constraints and
analytical functions are used to represent the uncertainty of
the system state. A similar approach can be used to employ
the hybrid method for other separations of the uncertainty
representation.

For the chosen uncertainty representation, only the con-
straint parameters are sampled, resulting in the following
set of particles {H(1), . . . ,H(Ns)} and {b(1), . . . , b(Ns)}.
The distribution of the closed-loop state, X, is represented
analytically with distribution given by Eqn. (4). Using this
hybrid representation of the uncertainty, none of the cur-
rent methods for enforcing the joint chance constraints,
P(X /∈ FX) ≤ δ, are readily applicable.

Using Boole’s inequality, the joint chance constraint can
be upper bounded by,

P(X /∈ FX) ≤
NFX∑
i=1

P(hT
iX > bi), (19)

which simplifies the constraints to a set of univariate con-
straints but it does not have an analytical solution due to the
products of random variables. However, by exploiting the
dual representation of the uncertainty, the probability can be
approximated by the sample average over the environment,

P(hT
iX > bi) ≈

1

Ns

Ns∑
j=1

(
1− P(h

(j)
i

T
X > b

(j)
i )

)
(20)

Using the same risk allocation technique introduced in the
Gaussian approximation method yields the following con-
straints that replace the original joint chance constraint with,

1

Ns

∑Ns
j=1

(
1− P(h

(j)
i

T
X > b

(j)
i )

)
≤ εi, i = 1, . . . , NFX ,∑NFX

i=1 εi ≤ δ.
(21)

Using the analytical function for the probability distribution
of the closed-loop state in Eqn. (4) this simplifies even further

1

Ns

∑Ns
j=1

1− Φ

 b
(j)
i − h

(j)
i

T
X̄√

h
(j)
i

T
ΣXh

(j)
i

 ≤ εi,∀i
∑NFX
i=1 εi ≤ δ.

(22)

Through the dual representation of the uncertainty the prod-
ucts of random variables have been eliminated, but whether
this leads to a computational advantage still needs to be
investigated. The following theorem determines when the set
of constraints in Eqn. (22) form a set of convex constraints.

Theorem 1: The constraints in Eqn. (22) are convex if
b
(j)
i ≥ h

(j)
i

T
X̄ for all j = 1, . . . , Ns and i = 1, . . . , NFX .

Proof: To show this, consider two feasible solutions(
X̄(1), ε

(1)
i

)
and

(
X̄(2), ε

(2)
i

)
. To prove the constraints are

convex, it suffices to show that the convex combination
of two feasible solutions is feasible. Define the convex
combination for 0 ≤ θ ≤ 1 as(
X̄(∗), ε

(∗)
i

)
,
(
θX̄(1) + (1− θ)X̄(2), θε

(1)
i + (1− θ)ε(2)i

)
.

Since b(j)i ≥ h
(j)
i

T
X̄, it restricts the Gaussian cumulative

distribution function to its concave subset (i.e. Φ(z) is
concave for z ∈ [0,∞)). From the concavity, the lefthand
side of Eqn. (22) for

(
X̄(∗), ε

(∗)
i

)
can be upper bounded by

1
Ns

∑Ns
j=1

(
1− Φ

(
ν
(∗)
ij

))
≤

1
Ns

∑Ns
j=1

(
1− θΦ

(
ν
(1)
ij

)
− (1− θ)Φ

(
ν
(2)
ij

))
,

(23)

where ν4ij ∈ R is defined as ν4ij =
b
(j)
i − h

(j)
i

T
X̄4√

h
(j)
i

T
ΣXh

(j)
i

and 4 = {(∗), (1), (2)}. After simplifying and collecting
common terms, the righthand side of Eqn. (23) is equal to

1− 1

Ns

Ns∑
j=1

θΦ
(
ν
(1)
ij

)
− 1

Ns

Ns∑
j=1

(1− θ)Φ
(
ν
(2)
ij

)
. (24)

From the definition of the two feasible solutions it is known
that

− 1

Ns

Ns∑
j=1

Φ
(
ν
(k)
ij

)
≤ ε(k)i − 1 k = 1, 2.

Substituting this into Eqns. (23), (24) and simplifying yields,
1
Ns

∑Ns
j=1

(
1− Φ

(
ν
(∗)
ij

))
≤ 1 + θ(ε

(1)
i − 1)+

(1− θ)(ε(2)i − 1)

= θε
(1)
i + (1− θ)ε(2)i

= ε
(∗)
i .

Hence the constraints in Eqn. (22) are convex.
The final optimization program for the hybrid approach is

given in program (25).
minimize E [f(X,U)]
subject to

xk+1 = Axk +Buk + wk, k = 0, . . . N − 1
yk = Cxk + vk, , k = 1, . . . N
wk ∼ N (0,Σw), k = 0, . . . N − 1
vk ∼ N (0,Σv), k = 1, . . . N
Ū ∈ FU
zji = b

(j)
i − h

(j)
i

T
X̄, ∀i, j

σ2
ji = h

(j)
i

T
ΣXh

(j)
i , ∀i, j

1
Ns

∑Ns
j=1

(
1− Φ

(
zji
σji

))
≤ εi, ∀i∑q

i=1 εi ≤ δ
(25)



For a general uncertainty model of the constraints, there is
no guarantee that b(j)i ≥ h

(j)
i

T
X̄. However, if the constraints

b
(j)
i −h

(j)
i

T
X̄ ≥ 0 ∀i, j are added to the optimization program

and none of the constraints is active, then the globally
optimal solution can be guaranteed.

As will be illustrated in the following examples, the
hybrid approach has several benefits over the Gaussian
approximation approach and the convex bounding method.
Since the hybrid approach is a convex program, it typically
can be solved faster than the nonconvex program in the
Gaussian approximation method. By using both sampling
and analytical functions to represent the uncertainty, fewer
particles are needed to fully represent the underlying uncer-
tainty than using sampling alone. As compared to the convex
bounding method, this drastically reduces the computational
complexity of the problem formulation.

V. RESULTS

The hybrid method using Ns = 50 samples was applied to
the previous example and the results are shown in Figure 3.
The estimated true probability of constraint violation using
Monte Carlo simulation is 0.0042 which is in between the
Gaussian approximation and the convex bounding method.
Since the hybrid method uses Boole’s inequality to bound
the joint chance constraint, it is expected that it is more
conservative than the convex bounding method. However,
the hybrid method reduces the conservativeness over the
Gaussian approximation method by sampling the constraint
parameters, which accounts for the interdependence between
violating the constraints at different time-steps.

The hybrid method optimization program was solved using
an interior point solver with a Newton step. In terms of
computational complexity, the hybrid method takes 2.42
seconds to compute the solution, which is a decrease of
30 times over the Gaussian approximation method and 110
times over the convex bounding method. Clearly, using the
hybrid approach would enable stochastic control in real-time
applications, whereas the other two approaches could only
be used for offline calculations.
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Fig. 3. Results for the hybrid method on the previous example. The solution
using the hybrid method with Ns = 50 samples.

VI. CONCLUSION

The stochastic control problem in uncertain environments
was formulated as a chance constrained optimization pro-
gram. A novel hybrid method was proposed that uses a com-
bination of analytical functions and sampling to represent the
uncertainty of the system and environment. Under certain
restrictions, the method results in a convex optimization
program guaranteeing the globally optimal solution, Also,
through this dual representation, the computational complex-
ity was drastically reduced by 30− 110 times over previous
methods which will enable stochastic control in real-time for
the motivating applications.

There are several interesting areas of future work that
the authors wish to explore. The authors wish to investigate
conditions on the uncertainty distributions under which the
hybrid method formulation is guaranteed to be convex.
Another area of future work is to explore an iterative solution
algorithm to remove particles that cause the hybrid method’s
constraints to be nonconvex while still maintaining a feasible
solution. Lastly, the authors wish to apply these algorithms
to actual systems to navigate through cluttered environments
or to enable energy efficient control of buildings.
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[4] A. Prékopa, “The use of discrete moment bounds in probabilistic
constrained stochastic programming models,” Annals of Operations
Research, vol. 85, pp. 21–38, 1999.

[5] D. van Hessem, Stochastic inequality constrained closed-loop model
predictive control with application to chemical process operation. PhD
thesis, Delft University of Technology, 2004.

[6] M. P. Vitus and C. J. Tomlin, “On feedback design and risk allocation
in chance constrained control,” in Proceedings of the 50th IEEE
Conference on Decision and Control, (Orlando, Florida), December
2011.

[7] M. P. Vitus and C. J. Tomlin, “Belief space planning for linear,
gaussian systems in uncertain environments,” in 18th World Congress
of the International Federation of Automatic Control, (Milan, Italy),
September 2011.

[8] N. Du Toit and J. Burdick, “Probabilistic collision checking with
chance constraints,” IEEE Transactions on Robotics, vol. 27, pp. 809
–815, August 2011.

[9] P. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle
uncertain maps,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2006), (Orlando, FL), pp. 1261–
1267, May 2006.

[10] M. Ono, L. Blackmore, and B. C. Williams, “Chance constrained finite
horizon optimal control with nonconvex constraints,” in Proceedings of
the 2010 American Control Conference, (Baltimore, Maryland), June
2010.

[11] M. P. Vitus, V. Pradeep, G. M. Hoffmann, S. L. Waslander, and
C. J. Tomlin, “Tunnel-MILP: Path planning with sequential convex
polytopes,” in Proceedings of the AIAA Guidance, Navigation, and
Control Conference, (Honolulu, Hawaii), August 2008.

[12] R. T. Rockafeller and S. P. Uryasev, “Optimization of conditional
value-at-risk,” Journal of Risk, vol. 2, pp. 21–42, 2000.

[13] A. Nemirovski and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM Journal of Optimization, vol. 17, no. 4,
pp. 969–996, 2006.

[14] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21.” http://cvxr.com/cvx, April 2011.


