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Abstract— This paper considers the problem of decision mak-
ing and control for autonomous urban vehicles operating among
other non-cooperating, possibly human controlled, vehicles. The
difficulty in this problem stems from the fact that the behavior
of the other vehicles is uncertain, and in many circumstances a
collision cannot be prevented even under restrictive assumptions
about the other drivers’ actions. Traditional approaches that
consider the worst-case actions of the other vehicles typically
are inapplicable because the solutions are either too conserva-
tive or infeasible. This work proposes a new method for solving
this problem using a chance constrained framework, which
requires that the violation probability of all the constraints
is guaranteed to be below a threshold. This formulation has
the benefit of not only achieving traditional objectives such
as minimization of fuel or travel time, but also hedges the
nominal planned maneuver against potential crashes leading
from the uncertainty in the other drivers’ actions. The proposed
framework is demonstrated on a passing maneuver example
which exhibits a region where the passing vehicle cannot be
guaranteed to prevent a collision in all circumstances.

I. INTRODUCTION

The significant progress in autonomous urban driving over
the past 30 years [1], [2] contributed to recent successes
including the Defense Advanced Research Projects Agency
(DARPA) urban challenge [3], the VisLab intercontinen-
tal autonomous challenge [4], and the Google autonomous
car [5]. Given these successes, it is speculated that within 30
years there will be autonomous cars integrated into the driv-
ing network which may eventually replace human drivers.
While these demonstrations have proven the feasibility of
the technology, at this time there is a large gap between
those demonstrations and what is commerically available.

Currently, there are many driver assistance systems such
as lane departure warning, adaptive cruise control, collision
avoidance, and blind spot detection that help humans with
the task of driving and increase the overall safety of the
driving network. These systems have benefited from the
significant progress in sensing, low-level control, and high-
level route planning, however, all these systems lack the
ability to perform any tactical planning which is critical to
enable the future of autonomous vehicle technology.

One area were humans currently outperform autonomy
is dealing with unexpected behavior or interpreting traffic
situations. In order to safely integrate autonomous vehicles
into urban driving, they must be able to do the same and
safely account for the inherent uncertainty in the domain,
which comes from the sensor noise as well as the uncertainty
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in the behaviors of the other vehicles. This paper focuses on
how to incorporate predictions of the possible driver actions
into the planning problem to compute the tactical strategy.
As stated in [6], “formally including these [human behavior]
predictions into planning mostly remains an open question.”

In driving, there are many situations that arise which re-
quire the driver (human or autonomous) to plan their actions
under uncertainty of the behavior of the other vehicles. Given
the large action space and the close proximity of the other
vehicles, one cannot use an approach that considers the
worst-case actions because the solution would either be too
conservative or infeasible.

California Partners for Advanced Transportation Technol-
ogy [7] and Safe Road Trains for the Environment [8] have
proposed the idea of platooning to automate highway driving
to increase safety and fuel efficiency, however, this concept
limits the potential applicability of autonomous vehicles.

Researchers have also investigated less restrictive solu-
tions. The work in [9] proposes a machine learning approach
for tactical reasoning in traffic situations such as passing
maneuvers and merging into a traffic stream. A hybrid
control approach to semiautonomous multivehicle safety is
developed in [6]. Verma and Del Vecchio propose to model
human driving behavior as a hybrid automaton with each
mode representing a driving primitive such as accelerating or
braking. Using an estimate of the driving mode, they develop
a controller based upon reachable sets to derive the least
restrictive safe control actions.

In this paper, the approach taken to handle the uncertainty
in the behavior of other drivers is to plan in the belief space
(the space of probability distributions of the system). One
approach to planning in the belief space is to use chance
constrained programming introduced by Charnes, Cooper
and Symonds [10]. This formulation allows constraints with
non-deterministic constraint parameters, while only guaran-
teeing constraint satisfaction up to a specified limit. In recent
years, chance constrained programming has received a lot of
attention [11], [12], [13].

Another related topic that has been extensively stud-
ied [14] is the feedback control problem for jump Markov
linear systems, which can be used to model the uncertainty
in driving behavior. This previous work was primarily con-
cerned with solving the feedback control problem to mini-
mize the expected value of a cost function given the value
of the state and mode at the current time-step. In contrast,
this paper is concerned with the predictive stochastic control
problem which takes into account the future distribution of
the system in order to control it to satisfy the system’s



constraints. This problem is difficult because it not only
requires the solution to minimize traditional objectives such
as fuel or travel time but also to hedge the nominal planned
maneuver against potential bad actions from other drivers.

This work proposes a new framework for tactical planning
in autonomous urban driving by modeling it as a chance
constrained optimization problem. While this approach has
the benefit of directly accounting for the uncertainty in the
behavior and decisions of the other drivers, it does not readily
lead to a tractable problem formulation. Given the discrete
and continuous actions of the other vehicles [6], the belief
space of the future system state is a multimodal distribution
which makes it difficult to evaluate the probability distribu-
tion as well as enforce the chance constraints. In addition,
the collision avoidance constraints result in a nonconvex fea-
sible region resulting in a nonconvex optimization program.
To overcome these difficulties, this work proposes to use
sampling to represent the system state and to use either
the convex bounding (conditional value-at-risk) method or
hybrid method [13] to handle the chance constraints. To
deal with the nonconvex feasible regions in the collision
avoidance problem, each sample is considered separately to
determine the correct high-level action which transforms the
feasible region into a convex region. This new framework
is demonstrated on an example of a passing maneuver to
highlight the success of the algorithm.

II. SYSTEM MODEL AND CONTROL STRATEGY

The problem considered has an autonomous vehicle op-
erating among a set of non-cooperating vehicles which can
either be human- or autonomous-controlled. These will be
referred to as human-controlled without loss of generality.
It has been shown that humans performing structured tasks
(such as driving, drawing, etc.) can be accurately modeled
as hybrid dynamical systems [6]. Given this, the human
driver will be modeled using a jump Markov linear system
formulated as a discrete-time stochastic hybrid system as
illustrated in Figure 1(a). The system state at time-step k
contains both a continuous state xk and a discrete mode σk.
The continuous state and output of the stochastic switched
system evolve according to

xk+1 =Aσk
xk+Bσk

uk+Wσk
wk, yk=Cσk

yk+Vσk
vk, (1)

where wk and vk are the process and output noises with
known probability distributions p(wk) and p(vk). The dis-
crete mode σk ∈ {1, . . . ,M} is a Markov chain that evolves
according to

P(σk+1 = j|σk = i) = Tij , (2)
where T ∈ RM×M is the transition matrix. The initial
distribution of the discrete and continuous state is assumed
to be known and given by p(x0, σ0). The discrete mode
is assumed to be independent of the continuous state and
continuous input.

Given the independence of the discrete and continuous
states, the probability distribution of the hybrid continuous-
discrete state is

P (X,σ|U,Y) = P (X|σ,U,Y) P (σ) , (3)
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Fig. 1. (a) A graphical model of a jump Markov linear system. (b) The
multimodal distribution of the future system state.

where σ = [σ0, . . . , σN ]T and N is the finite time hori-
zon. In general, even if all the continuous distributions,
P (X|σ,U,Y), are Gaussian, the total distribution is a mul-
timodal, non-Gaussian distribution due to mode switching
as shown in Figure 1(b). This can be determined from
the system state probability being the sum of weighted
Gaussian distributions for each mode. Given this multimodal
distribution, it is difficult to apply standard techniques to
solve the planning in the belief space problem.

There are many approaches for making decisions under
uncertainty. One approach is to assume worst-case uncer-
tainty for the human driver and prevent a collision under
any possible action of the human driver. Unfortunately, for
the task of driving, the set of possible actions is too broad
which causes the control strategy to be very conservative if
not non-existent due to the fact that there is no strategy which
can prevent a collision if the human driver tries to force
one. Another approach is to limit the set of possible actions.
This can be accomplished by either making assumptions on
typical driving behavior or by estimating the possible actions
of the driver based upon the observations of the driver. While
this approach will be less conservative than assuming worst-
case actions for the human driver, it may still lead to non-
existent control strategies because the set of possible actions
is still too broad to prevent a collision in all circumstances.

Instead of guaranteeing (up to the assumptions in the
problem formulation) safety regardless of the actions of
the other driver, it may be advantageous to constrain the
probability of a collision occurring to be below some thresh-
old, i.e. P (collision) ≤ δ. This approach has two main
benefits. First, by using a probabilistic measure of safety,
the approach will reduce the amount of conservatism in
the solution and will enable previously infeasible solutions
if they result in a low chance of leading to a collision.
Second, this framework also provides a way to systematically
tradeoff between the performance and safety of the system.
In addition, it specifically takes into account potential bad
actions of other drivers and hedges the nominal planned
maneuver to help mitigate them.

While using a probabilistic measure of safety has its
benefits, it still raises a few concerns. The first concern
involves the accuracy of the probability distributions over
the actions of the other drivers. It may be argued that if they
are wrong, then this approach provides no benefit. However,
a similar argument can be made about the provably safe
methods; if their assumptions are wrong then their guarantees
may not hold. The concern over the accuracy of the model



is a very common problem in control; in this discussion, it
is appropriate to consider the following famous quote:

All models are wrong, but some are useful.
George Box

It is almost certainly true that the probability distributions
over the actions of the other drivers are not 100% correct,
however, the emergent behavior from planning in the belief
space will still exhibit useful behavior. For example, the
vehicle will not choose actions that lead to serious outcomes.
When approaching a car on the right in a two lane highway
with its left indicator on, it will slow down until it estimates
the indicator was inadvertently turned on. In addition, it
can consider worst-case actions of the other drivers without
resulting in an infeasible problem, this allows the ability to
hedge against these actions to reduce their affect if they were
to occur. Finally, by using a probabilistic measure of safety
it allows the ability to make high level decisions on whether
or not to perform a specific maneuver based upon the risk.

Another issue is the practical problem of determining the
prior probabilities over the actions of human drivers. While
many years ago this would be a daunting (if not infeasi-
ble) task, the crowd sourced driving data being collected
via smartphones [15] can be used to analyze the driving
situations to build up the required probability distributions.

One way of using a probabilistic measure of safety is
through chance constrained control. This will be formally
developed in the following section, with the application to a
car passing scenario.

III. CHANCE CONSTRAINED CONTROL SOLUTION

The chance constrained stochastic control problem can be
expressed as

minimize E [φ(X,U)]
subject to

X = f(x0,σ,U,W)
Y = h(X,σ,V)
P (ϕ (X,U) ≤ 0) ≥ 1− δ

(4)

where the expectation is over the noise sources W and V
and the optimization is over the control policy. In general,
this optimization program is nonconvex. For notational con-
venience, the system state (X), measurements (Y), control
inputs (U), process noise (W) and measurement noise (V)
for all time-steps are concatenated to form a column vector.
Also, X = f(x0,σ,U,W) and Y = h(X,σ,V) will be used
as a compact representation for the calculation of all states
and measurements.

There is also a set of constraint functions on the state
trajectory and control inputs, ϕ : RnN × RmN → Rq ,
which are assumed to be convex functions. Unfortunately,
due to the stochasticity of the problem, the system constraints
cannot be considered deterministically; the stochasticity may
result in a non-zero chance that the constraints will be
violated. Consequently, the constraints must be considered
probabilistically, leading to a notion of risk. In this work,
risk is modeled as the probability of violating the constraints
leading to the use of chance constraints.

The main challenges to solving the optimization pro-
gram (4) is in characterizing the distribution of the system

z
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Fig. 2. A comparison of several convex bounds that can be used to
approximate the indicator function 1(z).

state and control inputs as well as satisfying the chance
constraints on the state and control inputs. The following
subsection introduces one approach of dealing with the
chance constraints to form a convex optimization program,
and the remaining sections demonstrate how to formulate
solutions to specific problems for decision making under
uncertainty for autonomous driving.

A. Convex Bounding Method

One approach to handling the complexity of the stochastic
hybrid system used to model the driver is by using the
convex bounding method developed by [16], [17]. Since
the probability distribution of the chance constraints is a
multimodal function, it is difficult to include them in the
optimization program. The intuition behind this method is
to find a conservative, convex approximation for the chance
constraint to convert the problem into a convex program.

To illustrate this method, consider a single individual
chance constraint of the form P (ϕi (X,U) > 0) ≤ δi, which
can be calculated via

P (ϕi (X,U) > 0) = E [1 (ϕi (X,U))] (5)
where 1(·) is the indicator function defined as

1(z) =

{
1, if z > 0
0, otherwise. (6)

From this representation, it can be easily seen that the
chance constraint in problem (4) is nonconvex since the
indicator function 1(z) is a nonconvex function; this greatly
complicates solving the optimization program. To reduce the
complexity, this method bounds the indicator function with
a convex function thereby rendering the program convex.

Suppose a nonnegative, nondecreasing, convex function
ψ : R→ R can be found such that for any α > 0, ψ(z/α) ≥
1(z) for all z then

E [ψ (ϕi (X,U) /α)] ≥ P (ϕi (X,U) > 0) . (7)

Consequently, the following convex constraint can be used
in place of the original chance constraint in Eqn. (6):

E [ψ (ϕi (X,U) /α)] ≤ δi, (8)

which will guarantee the original constraint holds.
The next step is to determine the exact form of function

to use for ψ. In this work, ψ(z) was chosen to be ψ(z) =
(z + 1)+ (where the subscript + denotes max{z + 1, 0})
because it results in the least conservative bound. Using this
function, the final convex constraint is:

E
[
(max (ϕ (X,U)) + α)+

]
≤ αδ, (9)

and the max is introduced to handle joint chance constraints.



By using the indicator function in Eqn. (6), the original
chance constraints equally weight all violations of the con-
straints no matter how large. In contrast, the convex bounding
methods use functions that approximate the indicator func-
tion and weight larger constraint violations more than smaller
ones. This can be visualized in Figure 2. For the application
of car driving, this non-equal weighting is beneficial because
the amount of constraint violation is likely proportional to
the damage that would occur in a collision.

Unfortunately, given the choice of bounding function
ψ(z), there is no analytical expression to compute the expec-
tation in Eqn. (9). To overcome this, it can be approximated
through sampling. One advantage of using sampling is that
it can represent the multimodal distribution of the human
driver’s behavior.

The expectation in Eqn. (9) can be evaluated by draw-
ing Ns particles from the process noise, measurement
noise, initial state, and discrete mode at each time-
step to obtain: {w(1)

0 , . . . , w
(1)
N−1, . . . , w

(Ns)
0 , . . . , w

(Ns)
N−1},

{v(1)0 , . . . , v
(1)
N−1, . . . , v

(Ns)
0 , . . . , v

(Ns)
N−1}, {x

(1)
0 , . . . , x

(Ns)
0 },

{σ(1), . . . ,σ(Ns)}. The expectation is calculated over both
the system state and the discrete mode as follows,

E
[
(max (ϕ (X,U)) + α)+

]
≈

1

Ns

∑Ns

j=1

(
max

(
ϕ
(
X(j)

(
σ(j)

)
,U(j)

))
+ α

)
+
,

(10)

where the state dependence on the discrete mode is explicitly
expressed. Using the convex bounding method, the final
optimization program is

minimize E [φ(X,U)]
subject to

X(i) = f(x
(i)
0 ,σ(i),U(i),W(i)), ∀i

Y(i) = h(X(i),σ(i),V(i)), ∀i
E
[
(max (ϕ (X,U)) + α)+

]
≤ δ

(11)

IV. CASE STUDY: PASSING A TRACTOR TRAILER

In this example, the proposed framework is used to analyze
the scenario of passing a tractor trailer on a four-lane
highway. This maneuver is interesting because during the
maneuver there is a region in which the passing vehicle
cannot prevent a collision.

A. Formulation
The system dynamics for the passing car and tractor trailer

are modeled in relative coordinates using discretized point
mass dynamics,

xk =

 ∆pk
∆vk
lk

 , A1 =

 1 ∆t 0
0 1 0
0 0 ∆t

 ,
A2 =

 1 ∆t 0
0 1 0
0 0 1−K

 , B1,2 =

 0.5∆t2

∆t
0

 .
(12)

Let ∆pk be the relative longitudinal position between the
two vehicles with ∆pk ≤ 0 and ∆pk ≥ L indicate that
the passing car is behind and ahead of the tractor trailer,
respectively, let ∆vk be the relative longitudinal velocity, let
lk be the lateral position of the tractor trailer, and let K be a

Remain Change
p12

p11 p22

Fig. 3. The jump Markov model for the tractor trailer example. There are
two nodes: remaining in the current lane, or performing a lane change. If the
tractor trailer changes lanes then it is assumed it completes the maneuver.

gain that dictates the lane changing behavior. Define ∆lk to
be the difference between the lateral positions of the tractor
trailer and passing car with ∆lk ≥ W indicating that the
lateral positions do not overlap. It is assumed that there are a
set of constraints on the minimum (∆vb,∆va) and maximum
(∆vb,∆va) relative velocities where the subscript ‘b’ and
‘a’ represent before and after the tractor trailer decides to
change lanes. The different set of bounds on the velocities
before and after is to model the behavior that drivers exhibit
a wider range of feasible actions when trying to avoid a
conflict. A constraint on the feasible inputs is also imposed
u ≤ uk ≤ u,∀k.

This example is modeled by a hybrid system, as shown
in Figure 3, with two states: 1) the tractor trailer remains in
the current lane, 2) the tractor trailer changes lanes. In this
model, there is a probability 1−p that the tractor trailer will
initiate a lane change and once a lane change is initiated it
must be completed. An abort lane change mode could also
be included in the model, but it was omitted to obtain a more
robust solution. In this problem, a collision doesn’t occur if

∆lk > W ∨∆pk ≤ 0 ∨∆pk ≥ L,∀k. (13)
The passing maneuver can be examined to determine the

set of possible actions that the passing vehicle has which
can prevent a collision with the tractor trailer. To perform
this analysis, the backwards reachable set was calculated
from the set of final safe conditions of behind or ahead
of the tractor trailer. Figure 4 illustrates the set of safe
and unsafe initial conditions, where the x-axis is the initial
relative speed and the y-axis is the relative distance between
the two vehicles when the tractor trailer initiates the lane
change. From the analysis, if the tractor trailer initiates the
lane change while the passing car is in the red region, then
there is nothing the passing vehicle can do to prevent a
collision. In the dark and light blue regions, the passing
vehicle can either accelerate or decelerate, respectively, in
order to prevent a collision. From this analysis, there is
no trajectory through the state space that can guarantee the
safety of the passing car. Furthermore, due to the tractor
trailer’s blindspots, the trailer could inadvertently change
lanes into the vehicle, leading to an unavoidable imminent
collision. Consequently, if an algorithm that guaranteed the
safety of the system for any action of the tractor trailer was
used, it would never allow the vehicle to pass the tractor
trailer causing the system to be in a deadlock condition.
Therefore, the only way to prevent this deadlock condition
is for the passing car to allow some amount of risk of a
collision. Given the reachable set, it is not apparent what
the best trajectory in (∆v,∆p) space is to minimize the
probability of collision. A novel method of simultaneously
making the high-level decision under the uncertainty of the



tractor trailer as well as calculating the continuous control
inputs to hedge against the possible actions of the tractor
trailer is further formulated below.
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Fig. 4. The backwards reachable set for the tractor trailer passing maneuver.
The x-axis is the initial relative speed and the y-axis is the relative distance
between the two vehicles when the tractor trailer initiates the lane change.

The problem is formulated as the program (14).
minimize E [φ(X,U)]
subject to

xk+1 = Aσk
xk +Buk

u ≤ uk ≤ u
∆vb ≤ ∆vk ≤ ∆vb, if σk = 1
∆va ≤ ∆vk ≤ ∆va, if σk = 2
P(∆lk ≥W∨∆pk ≤ 0∨∆pk ≥ L ∀k)≥1−δ

(14)
The optimization program is nonconvex for two reasons.

First, the stochastic nature of the discrete state results in
a multimodal distribution of the future system state which
causes any chance constraint to be nonconvex. This can
be mitigated by using sampling to represent the probability
distribution. For this example, a set of samples is drawn
from the distribution of the discrete mode of the hybrid
system which represents the uncertainty in the tractor trailer’s
decision of changing lanes: {σ(1), . . . ,σ(Ns)}. It is assumed
that there is not any significant noise in the system state,
but it could also be included in the problem solution.
This sampling technique eliminates the first problem of not
being able to represent the probability distribution through
analytical functions.

The second reason for nonconvexity is the feasible region
for the passing vehicle is nonconvex. The chance constraint
P(∆lk ≥ W ∨∆pk ≤ 0 ∨∆pk ≥ L ∀k)≥1−δ results in a
disjunction of chance constraints:

P(∆lk ≥W ) ≥ 1− δk ∨ P(∆pk ≤ 0) ≥ 1− δk∨
P(∆pk ≥ L) ≥ 1− δk,

∑
δk ≤ δ,

(15)

which is a nonconvex constraint. To solve this problem, the
chance constraint might be simplified by utilizing informa-
tion from the set of samples. Each sample, σ(i), corresponds
to a time klc (which can be infinity) that the tractor trailer
will change lanes. From the reachable set in Figure 4, there
is a distinct separation of when the passing car should either
abort or continue the maneuver. Consequently, if this can be
converted into a time-step kdp that represents this decision
point then it can be used to simplify the chance constraint.
In this scenario, the time-step decision point kdp can be
calculated using the maximum deceleration/acceleration rates
and comparing the constraint violation at various time-steps.
Let Ndur represent the number of time-steps it takes the
tractor trailer to collide with the passing car if an accident

cannot be prevented. Using this information, the chance
constraint in Eqn. (15) can be simplified to

P(1) ≥ 1− δk, if klc =∞
P(∆pkc+k ≤ 0) ≥ 1− δk, if klc ≤ kdp
P(∆pkc+k ≥ L) ≥ 1− δk, otherwise,

(16)

where kc = klc + Ndur and
∑N−kc
k=0 δk ≤ δ. Now that the

constraints have been decomposed into convex constraints,
the chance constraint can now be formulated.

Combining both the sampling and the simplification of
the feasible region of the passing car, the convex bounding
method can be used to enforce the chance constraint. Let c(i)

be the constraint for each sample defined as

c(i) =


−∞, if klc =∞

max
k∈{kc,...,N}

∆pk, if klc ≤ kdp
max

k∈{kc,...,N}
L−∆pk, otherwise.

(17)

Finally, using the convex bounding method the chance con-
straint is

1

Ns
1T
(

[c(1), . . . , c(Ns)]T + α1
)
+
≤ αδ, (18)

where 1 is a column vector of all ones with size Ns.
The final optimization program is shown in Eqn. (19).

minimize E [φ(X,U)]
subject to

x
(i)
k+1 = A

(i)

σ
(i)
k

x
(i)
k +Bu

(i)
k

u ≤ u(i)k ≤ u
∆vb ≤ ∆v

(i)
k ≤ ∆vb, if σ(i)

k = 1

∆va ≤ ∆v
(i)
k ≤ ∆va, if σ(i)

k = 2
1
Ns

1T ([c(i), . . . , c(Ns)]T + α1
)
+
≤ αδ

(19)

This optimization could be infeasible for a given proba-
bility of failure δ and hybrid mode probability estimate p,
however, this means that the passing maneuver is currently
not safe. Consequently, the vehicle needs to maintain its
current safe relative position until the estimator of the human
behavior changes enough to allow the passing maneuver.

B. Results

The problem was solved for Ns = 1045 samples with
an allowed probability of failure of δ = 0.015, and the
results are shown in Figure 5. For this example, the transition
probability is p = 0.999, ∆t = 0.5 seconds, and the
following limits are imposed ∆vb = −5 MPH, ∆vb = 5
MPH, ∆va = −10 MPH, ∆va = 10 MPH, u = −27.65ft/s2,
u = 14.8 ft/s2. The acceleration and deceleration limits were
calculated from common vehicle performance characteristics.
For this experiment, the time-step decision point of whether
to abort or continue the maneuver was chosen to be kdp =
22. The cost function is a weighted function of the L2-norm
of the nominal control input and the distance from the initial
position for samples that aborted the passing maneuver. This
was chosen to take into account the possibility of colliding
with vehicles behind the passing car. Note, this is only
one choice of objective function, and the formulation is not
limited to this choice of objective function.



The relative position of the vehicles versus time-step
is shown in Figure 5(a). The colored lines represent the
trajectories of the samples that have a lane change and
the black line is the trajectory of the system with no lane
change. The red circles indicate the relative positions of the
vehicles when a collision would occur for the samples that
lead to a collision. The red patch illustrates the region that the
passing vehicle cannot prevent a collision if the tractor trailer
initiates a lane change. For the 1045 samples only 41 have
a lane change and 7 of them lead to a collision between the
vehicles. For this solution, the true probability of collision
is 0.0067 which is below the allowed 0.015. One important
result of this solution method is that it simultaneously plans
the overall passing maneuver behavior while attempting to
mitigate the consequences of potential accidents.

Figure 5(b) shows the system trajectory with no lane
change overlaid on the reachable set. It is interesting to note
that the system doesn’t choose the shortest trajectory through
the unsafe region, but rather takes a curved path.
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Fig. 5. (a) The relative position versus time-step for the samples with a
lane change are the colored lines. The trajectory of the system with no lane
change is the black line. The red dotted line represents the length of the
tractor trailer. The red circles indicate the relative positions of the vehicles
when a collision would occur for the samples that lead to a crash. The
shaded red patch indicates the region which the passing car cannot prevent
a collision. (b) The trajectory of the system (black line) with no tractor
trailer lane change is overlayed onto the reachable set.

In the previous example, the time for the tractor trailer
to change lanes (Ndur) was considered a known constant,
but this formulation can also handle uncertainty in that
parameter at the expense of requiring more samples to
accurately represent the underlying probability distribution.
Figure 6 shows the results for Ns = 5096 samples and a
uniform distribution over Ndur ∈ {5, 6, 7, 8, 9}. The passing
maneuver is similar since the distribution for the lane change
maneuver is symmetric around the previous example, but the
avoidance maneuver is different since the time to collision
is different. In this example, there are 195 lane change
maneuvers and of them 45 lead to a crash resulting in a
true probability of failure of 0.0088.

V. CONCLUSION

The tactical planning problem for autonomous urban ve-
hicles was formulated as a chance constrained optimization
problem. This formulation has the benefit of not only mini-
mizing traditional objectives such as fuel or travel time, but
also specifically taking into account potential bad actions
of other drivers and hedging the nominal planned maneuver
against them. This framework was demonstrated on a vehicle
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Fig. 6. The relative position versus time-step for a subset of samples
with lane change (colored) and no lane change (black) for the system with
variable lane change speed.

passing maneuver which exhibits a region where the passing
vehicle cannot prevent a collision in all circumstances.
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