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Abstract This paper presents a distributed control algorithm to drive a group of
robots to spread out over an environment and provide adaptive sensor coverage of
that environment. The robots use an on-line learning mechanism to approximate
the areas in the environment which require more concentrated sensor coverage,
while simultaneously exploring the environment before moving to final positions
to provide this coverage. More precisely, the robots learn a scalar field, called the
weighting function, representing the relative importance of different regions in the
environment, and use a Traveling Salesperson based exploration method, followed
by a Voronoi-based coverage controller to position themselves for sensing over the
environment. The algorithm differs from previous approaches in that provable ro-
bustness is emphasized in the representation of the weighting function. It is proved
that the robots approximate the weighting function with a known bounded error, and
that they converge to locations that are locally optimal for sensing with respect to
the approximate weighting function. Simulations using empirically measured light
intensity data are presented to illustrate the performance of the method.
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1 Introduction
In this paper we present a distributed control algorithm to command a group of
robots to explore an unknown environment while providing adaptive sensor cov-
erage of interesting areas within the environment. This algorithm has many appli-
cations in controlling teams of robots to perform tasks such as search and rescue
missions, environmental monitoring, automatic surveillance of rooms, buildings, or
towns, or simulating collaborative predatory behavior. As an example application,
Japan was hit by a major earthquake on March 11, 2011 that triggered a devastat-
ing tsunami causing catastrophic damage to the nuclear reactors at Fukushima. Due
to the risk of radiation exposure, humans could not inspect (or repair) the nuclear
reactors, however, a team of robots could be used to monitor the changing levels
of radiation. Using the proposed algorithm, the robots would concentrate on areas
where the radiation was most dangerous, continually providing updated information
on how the radiation was evolving. This information could be used to notify people
in eminent danger of radiation exposure due to the changing conditions. Similarly,
consider a team of waterborne robots charged with cleaning up an oil spill. Our
controller allows the robots to distribute themselves over the spill, learn the areas
where the spill is most severe and concentrate their efforts on those areas, without
neglecting the areas where the spill is not as severe.

Sensor coverage algorithms have been receiving a great deal of attention in recent
years. Cortés et al. [Cortés et al., 2004] considered the problem of findin an optimal
sensing configuration for a group of mobile robots. They used concepts from loca-
tional optimization [Weber, 1929, Drezner, 1995] to control the robots based upon
gradient descent of a weighting function which encodes the sensing quality and cov-
erage of the environment. This weighting function can be viewed as describing the
importance of areas in the environment. The control law for each robot is distributed
and only depends on the robot’s position and the positions of its neighbors’. How-
ever, all robots are required to know the weighting function a priori which restricts
the algorithm from being deployed in unknown environments. There have been sev-
eral extensions to this formulation of coverage control. In [Cortés et al., 2005], the
robots were assumed to have a limited sensing or communication range. Pimenta et
al. [Pimenta et al., 2008a] incorporated heterogeneous robots, and extended the al-
gorithm to handle nonconvex environments. The work [Martı́nez, 2010] used a dis-
tributed interpolation scheme to recursively estimate the weighting function. Sim-
ilarly, [Schwager et al., 2009] removed the requirement of knowing the weighting
function a priori by learning a basis function approximation of the weighting func-
tion on-line. This strategy has provable convergence properties, but requires that the
weighting function lies in a known set of functions. The purpose of the present work
is to remove this restriction, greatly broadening the class of weighting functions that
can be approximated.

Similar frameworks have been used for multi-robot problems in a stochastic set-
ting [Arsie and Frazzoli, 2007]. There are also a number of other notions of multi-
robot sensor coverage (e.g. [Choset, 2001, Latimer IV et al., 2002] and [Butler and
Rus, 2004, Ögren et al., 2004]), but we choose to adopt the locational optimization
approach for its interesting possibilities for analysis and its compatibility with exist-
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ing ideas in adaptive control [Narendra and Annaswamy, 1989, Sastry and Bodson,
1989, Slotine and Li, 1991].

As noted above, this work extends [Schwager et al., 2009] by removing restric-
tions on the weighting function, so that a much broader class of weighting functions
can be provably approximated. Typically, the form of the weighting function is not
known a priori, and if this is not accounted for directly then the learning algorithm
could chatter between models or even become unstable. Also, in simulations per-
formed with a realistic weighting function, the original algorithm only explores in
a local neighborhood of the robots resulting in a poor approximation of the weight-
ing function. However, the algorithm we propose here explores the entire space,
successfully learning the weighting function with provable robustness. The robots
first partition the environment and perform a Traveling Sales Person (TSP) based
distributed exploration, so that the unknown weighting function can be adequately
approximated. They then switch, in an asynchronous and distributed fashion, to a
coverage mode in which they deploy over the environment to achieve positions that
are advantageous for sensing. The robots use an on-line learning mechanism to ap-
proximate the weighting function. Since we do not assume the robots can perfectly
approximate the weighting function, the parameter adaptation law for learning this
function must be carefully constructed to be robust to function approximation errors.

Without specifically designing for such robustness, it is known that many differ-
ent types of instability [Ioannou and Kokotovic, 1984] can occur. Several techniques
have been proposed in the adaptive control literature to handle this kind of robust-
ness, including using a dead-zone [Peterson and Narendra, 1982,Samson, 1983], the
σ -modification [Ioannou and Kokotovic, 1984], and the e1- modification [Naren-
dra and Annaswamy, 1987]. We chose to adapt a dead-zone technique, and prove
that the robots learn a function that has bounded difference from the true function,
while converging to positions that are locally optimal for sensing with respect to the
learned function.

The paper is organized as follows. In Section 2 we introduce notation and for-
mulate the problem. In Section 3 we describe the function approximation strategy
and the control algorithm, and we prove the main convergence result of the paper.
Section 4 gives the results of a numerical simulation with a weighting function that
was determined from empirical measurements of light intensity in a room. Finally,
conclusions and future work are discussed in Section 5.

2 Problem Formulation
In this section we build a model of the multi-robot system, the environment, and
the weighting function defining areas of importance in the environment. We then
formulate the robust adaptive coverage problem with respect to this model.

Let there be n robots with positions pi(t) in a planar environment Q ⊂ R2. The
environment is assumed to be compact and convex.1 We call the tuple of all robot
positions P = (p1, . . . , pn) ∈Qn the configuration of the multi-robot system, and we

1 These assumptions can be relaxed to certain classes of nonconvex environments with obstacles
[Breitenmoser et al., 2010, Pimenta et al., 2008a, Caicedo and Žefran, 2008].
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assume that the robots move with integrator dynamics

ṗi = ui, (1)

so that we can control their velocities directly through the control input ui. We define
the Voronoi partition of the environment to be V (P) = {V1(P), . . . ,Vn(P)}, where

Vi(P) = {q ∈ Q | ‖q− pi‖ ≤ ‖q− p j‖,∀ j 6= i},

and ‖ · ‖ is the `2-norm. We think of each robot i as being responsible for sensing
in its associated Voronoi cell Vi. Next we define the communication network as an
undirected graph in which all robots whose Voronoi cells touch share an edge in
the graph. This graph is known as the Delaunay graph. Then the set of neighbors of
robot i is defined as Ni := { j |Vi∪Vj 6= /0}.

We now define a weighting function over the environment φ : Q 7→ R>0 (where
R>0 denotes the strictly positive real numbers). This weighting function is not
known by the robots. Intuitively, we want a high density of robots in areas where
φ(q) is large and a lower density where it is small. Finally, suppose that the robots
have sensors with which they can measure the value of the weighting function at
their own position, φ(pi) with very high precision, but that their quality of sensing
at arbitrary points, φ(q), degrades quadratically in the distance between q and pi.
That is to say the cost of a robot at pi sensing a point at q is given by 1

2‖q− pi‖2.
Since each robot is responsible for sensing in its own Voronoi cell, the cost of all
robots sensing over all points in the environment is given by

H (P) =
n

∑
i=1

∫
Vi(P)

1
2
‖q− pi‖2

φ(q)dq. (2)

This is the overall objective function that we would like to minimize by controlling
the configuration of the multi-robot system.2

The gradient of H can be shown3 to be given by

∂H

∂ pi
=−

∫
Vi(P)

(q− pi)φ(q)dq =−Mi(P)(Ci(P)− pi), (3)

where we define Mi(P) :=
∫

Vi(P) φ(q)dq and Ci(P) := 1/Mi(P)
∫

Vi(P) qφ(q)dq. We
call Mi the mass of the Voronoi cell i and Ci its centroid, and for efficiency of no-
tation we will henceforth write these without the dependence on P. We would like
to control the robots to move to their Voronoi centroids, pi =Ci for all i, since from
(3), this is a critical point of H , and if we reach such a configuration using gradient
descent, we know it will be a local minimum. Global optimization of H is known
to be NP-hard, hence it is standard in the literature to only consider local optimality.

2 We have pursued an intuitive development of this cost function, though more rigorous arguments
can also be made [Schwager et al., 2011]. This function is known in several fields of study including
the placement of retail facilities [Drezner, 1995] and data compression [Lloyd, 1982].
3 The computation of this gradient is more complex than it may seem, because the Voronoi cells
Vi(P) depend on P, which results in extra integral terms. Fortunately, these extra terms all sum to
zero, as shown in, e.g. [Pimenta et al., 2008b].
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2.1 Approximate Weighting Function

Note that the cost function (2) and its gradient (3) rely on the weighting function
φ(q), which is not known to the robots. In this paper we provide a means by which
the robots can approximate φ(q) online in a distributed way and move to decrease
(2) with respect to this approximate φ(q).

To be more precise, each robot maintains a separate approximation of the weight-
ing function, which we denote φ̂(q, t). These approximate weighting functions
are generated from a linear combination of m static basis functions, K (q) =
[K1(q) · · ·Km(q)]T, where each basis function is a radially symmetric Gaussian of
the form

K j(q) =
1

2πσ
exp
{
−
‖q−µ j‖2

2σ2

}
, (4)

with fixed width σ and fixed center µ j. Furthermore, the centers are arranged in
a regular grid over Q. Each robot then forms its approximate weighting function
as a weighted sum of these basis functions φ̂i(q, t) = K (q)Tâi(t), where âi(t)
is the parameter vector of robot i. Each element in the parameter vector is con-
strained to lie within some lower and upper bounds 0 < amin < amax < ∞ so that
âi(t) ∈ [amin,amax]

m. This function approximation scheme is illustrated in Fig. 1.
Robot i’s approximation of its Voronoi cell mass and centroid can then be defined as

Fig. 1 The weighting function approximation is illustrated in this simplified 2-D schematic. The
true weighting function φ(q) is approximated by robot i to be φ̂i(q, t). The basis function vector
K (q) is shown as three Gaussians (dashed curves), and the parameter vector âi(t) denotes the
weighting of each Gaussian.

M̂i(P, t) :=
∫

Vi(P) φ̂i(q, t)dq and Ĉi(P, t) := 1/M̂i(P, t)
∫

Vi(P) qφ̂i(q, t)dq, respectively.
Again, we will drop the dependence of M̂i and Ĉi on (P, t) for notational simplicity.

We measure the difference between an approximate weighting function and the
true weighting function as the L∞ function norm of their difference, so that the best
approximation is given by

a := argmin
â∈[amin,amax]m

max
q∈Q
|K (q)Tâ−φ(q)|, (5)

and the optimal function approximation error is given by

φε(q) := K (q)Ta−φ(q). (6)

It will be shown in the proof of Theorem 1 that the L∞ norm gives the tightest ap-
proximation bound with our proof technique. The only restriction that we put on
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φ(q) is that it is bounded over the environment, or equivalently, the approximation
error is bounded, |φε(q)| ≤ φεmax < ∞. We assume that the robots have knowledge
of this bound, φεmax . The theoretical analysis in the previous work [Schwager et al.,
2009] was not robust to function approximation errors in that it required φε(q)≡ 0.
One of the main contributions here is to formulate an algorithm that is provably ro-
bust to function approximation errors. We only require that the robots have a known
bound for the function approximation error, φεmax .

Finally, we define the parameter error as ãi(t) := âi(t)− a. In what follows we
describe an online tuning law by which robot i can tune its parameters, âi, to ap-
proach a neighborhood of the optimal parameters, a. Our proposed controller then
causes the robots to converge to their approximate centroids, pi → Ĉi for all i. An
overview of the geometrical objects involved in our set-up is shown in Figure 2.

: Weighting function: Convex environment

: Robot location

: Voronoi region
of robot 

: True centroid

: Estimated 
centroid

True position error Estimated
position error

Fig. 2 A graphical overview of the quantities involved in the controller is shown. The robots move
to cover a bounded, convex environment Q their positions are pi, and they each have a Voronoi
region Vi with a true centroid Ci and an estimated centroid Ĉi. The true centroid is determined
using a sensory function φ(q), which indicates the relative importance of points q in Q. The robots
do not know φ(q), so they calculate an estimated centroid using an approximation φ̂i(q) learned
from sensor measurements of φ(q).

3 Robust Adaptive Coverage Algorithm
In this section we describe the algorithm that drives the robots to spread out over
the environment while simultaneously approximating the weighting function online.
The algorithm naturally decomposes into two parts: (1) the parameter adaptation
law, by which each robot updates its approximate weighting function, and (2) the
control algorithm, which drives the robots to explore the environment before moving
to their final positions for coverage. We describe these two parts in separate sections
and then prove performance guarantees for the two working together.

3.1 Online Function Approximation

The parameters âi used to calculate φ̂i(q, t) are adjusted according to a set of adap-
tation laws which are introduced below. First, we define two quantities,
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Λi(t) = Λ0 +
∫

s∈Ωi(t)
K (s)K (s)T ds, and λi(t) =

∫
s∈Ωi(t)

K (s)φ(s)ds, (7)

where Ωi(t) = {s | s = pi(τ) for someτ ∈ [0, t]} is the set of points in the trajectory
of pi from time 0 to time t, and Λ0 is a positive definite matrix. The quantities in
(7) can be calculated differentially by robot i using Λ̇i(t) = Ki(t)Ki(t)T|ṗi(t)| with
initial condition Λ0, and λ̇i(t) =Ki(t)φi(t)|ṗi(t)| with zero initial conditions, where
we introduced the shorthand notation Ki(t) := K (pi(t)) and φi(t) := φ(pi(t)). We
require that Λ0 > 0, though it can be arbitrarily small. This will ensure that Λi(t)> 0
for all time because

∫
s∈Ωi(t)K (s)K (s)T ds ≥ 0 and the sum of a positive semi-

definite matrix and a positive definite matrix is positive definite. This, in turn, en-
sures that Λ

−1/2
i always exists, which will be crucial in the control law and proof of

convergence below. As previously stated, robot i can measure φi(t) with its sensors.
Now we define another quantity

Fi =

∫
Vi

K (q)(q− pi)
T dq

∫
Vi
(q− pi)K (q)T dq∫

Vi
φ̂i(q)dq

. (8)

Notice that Fi can also be computed by robot i as it does not require any knowledge
of the true weighting function, φ .

The “pre” adaptation law for âi is now defined as

˙̂apre
i =−γBdz(Λiâi−λi)−ζ ∑

j∈Ni

li j(âi− â j)− kFiâi. (9)

where γ , ζ , and k are positive gains, li j is the length of the shared Voronoi edge
between robots i and j, and Bdz(·) is a dead zone function which gives a zero if its
argument is below some value. We will give Bdz careful attention in what follows
as it is the main tool to ensure robustness to function approximation errors. Before
describing the dead zone in detail, we note that the three terms in (9) have an intu-
itive interpretation. The first term is an integral of the function approximation error
over the robot’s trajectory, so that the parameter âi is tuned to decrease this error.
The second term is the difference between the robot’s parameters and its neighbors’
parameters. This term will be shown to lead to parameter consensus; the parameter
vectors for all robots will approach a common vector. The third term compensates
for uncertainty in the centroid position estimate, and will be shown to ensure con-
vergence of the robots to their estimated centroids. A more in-depth explanation of
each of these terms can be found in [Schwager et al., 2009].

Finally, we give the parameter adaptation law by restricting the “pre” adaptation
law so that the parameters remain within their prescribed limits [amin,amax] using a
projection operator. We introduce a matrix Iproji defined element-wise as

Iproji :=


0 for amin < âi( j)< amax
0 for âi( j) = amin and ˙̂apre

i ( j)≥ 0
0 for âi( j) = amax and ˙̂apre

i ( j)≤ 0
1 otherwise,

(10)
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where ( j) denotes the jth element for a vector and the jth diagonal element for a
matrix. The entries of Iproji are only nonzero if the parameter is about to exceed its
bound. Now the parameters are changed according to the adaptation law

˙̂ai = Γ ( ˙̂aprei − Iproji
˙̂aprei), (11)

where Γ ∈ Rm×m is a diagonal, positive definite gain matrix. Although the adapta-
tion law given by (11) and (9) is notationally complicated, it has a straightforward
interpretation, it is of low computational complexity, and it is composed entirely of
quantities that can be computed by robot i.

As mentioned above, the key innovation in this adaptation law compared with the
one in [Schwager et al., 2009] is the dead zone function Bdz. We design this function
so that the parameters are only changed in response to function errors that could be
reduced with different parameters. More specifically, the minimal function error that
can be achieved is φε , as shown in (6). Therefore if the integrated parameter error
(Λiâi− λi) is less than φε integrated over the robot’s path, we have no reason to
change the parameters. We will show that the correct form for the dead zone to
prevent unnecessary parameter adaptation is

Bdz(x) =

{
0 if C(x)< 0

x
‖x‖

C(x) otherwise, (12)

where C(x) := ‖Λ 1/2
i ‖

(
‖Λ−1/2

i x‖−‖Λ−1/2
i βi‖φεmax −‖Λ

−1/2
i Λ0‖amax

)
and

βi :=
∫

s∈Ωi(t)K (s)ds. This condition can be evaluated by robot i since βi(t) can
be computed differentially from β̇i = Ki|ṗi| with zero initial conditions, we have
already seen how to compute Λi, and φεmax , amax, and Λ0 are known.

3.2 Control Algorithm

We propose to use a control algorithm that is composed of a set of control modes,
with switching conditions to determine when the robots change from one mode to
the next. The robots first move to partition the basis function centers among one
another, so that each center is assigned to one robot, then each robot executes a
Traveling Salesperson (TSP) tour through all of the basis function centers that have
been assigned to it. This tour will provide sufficient information so that the weight-
ing function can be estimated well over all of the environment. Then the robots
carry out a centroidal Voronoi controller using the estimated weighting function to
drive to final positions. We call the first mode the “partitioning” mode, the second
the “exploration” mode, and the third the “coverage” mode. This sequence of con-
trol modes is executed asynchronously in a distributed fashion, during which the
function approximation parameters are updated continually with (11) and (9).

For each robot we define a mode variable Mii ∈ {partition,explore,cover}. In
order to coordinate their mode switches, each robot also maintains an estimate of
the modes of all the other robots, so that Mi j is the estimate by robot i of robot
j’s mode, and Mi := (Mi1, . . . ,Min) is an n-tuple of robot i’s estimates of all
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robots’ modes. Furthermore, the modes are ordered with respect to one another by
partition < explore < cover, so that the max(Mi,M j) function is the maximum be-
tween each element of the two mode estimate tuples, Mi and M j, according to this
ordering. These mode estimates are updated using the flooding communication pro-
tocol described below. We first describe the algorithmic structure of the controller,
then define the behavior within each mode, and finally prove the convergence of the
coupled control algorithm and learning algorithm to a desirable final configuration.

The two algorithms below run concurrently in different threads. Algorithm 1
defines the switching conditions between control modes, and Algorithm 2 describes
the flooding protocol that each robot uses to maintain its mode estimates.

Algorithm 1 Switching Control Algorithm (executed by robot i)
Require: Communication with Voronoi neighbors.
Require: Knowledge of position, pi, in global coordinate frame.
Require: Knowledge of the total number of robots n.
Require: Knowledge of flooding algorithm (Algorithm 2) update period, T .
Require: Access to mode estimates Mi updated from Algorithm 2.

while Mi 6= (explore, . . . ,explore) do
if Mii == explore then

ui = [0, 0]T

else
ui = upartition

i
end if
if Distance to mean of basis function centers < εpartition and Mii == partition then

Mii = explore
end if

end while
Compute TSP tour through basis function centers N µ

i
Wait for nT seconds with ui = [0, 0]T

Execute TSP tour
Mii = cover
while Mii == cover do

ui = ucover
i

end while

Algorithm 2 Mode Estimate Flooding (executed by robot i)
Require: The network is connected.
Require: The robots have synchronized clocks with which they broadcast during a pre-assigned

time slot.
Initialize Mi = (partition, . . . ,partition)
while 1 do

if Broadcast received from robot j then
Mi = max(Mi,M j) (where partition < explore < cover)

end if
if Robot i’s turn to broadcast then

Broadcast Mi
end if

end while
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The control laws within each mode are then defined as follows. In the partition
mode, each robot uses the controller

upartition
i = k

( 1
|N µ

i |
∑

j∈N µ

i

µ j− pi

)
, (13)

where N µ

i := {µ j | ‖µ j − pi‖ ≤ ‖µ j − pk‖∀k 6= i} is the set of the closest basis
function centers to robot i, µ j are the basis function centers from (4), and |N µ

i |
is the number of elements in N µ

i . In the explore mode, each robot drives a tour
through each basis function center in its neighborhood, µ j for j ∈N µ

i . Any tour
will do, but a good choice is to use an approximate TSP tour. Finally, for the “cover”
mode, each robot moves toward the centroid of its Voronoi cell using

ucover
i = k(Ĉi− pi), (14)

where k is the same positive gain from (9).
Using the above control and function approximation algorithm, we can prove that

all robots converge to the estimated centroid of their Voronoi cells, that all robots
function approximation parameters converge to the same parameter vector, and that
this parameter vector has a bounded error with the optimal parameter vector. This is
stated formally in the following theorem.

Theorem 1 (Convergence). A network of robots with dynamics (1) using Algo-
rithm 1 for control, Algorithm 2 for communication, and (9) and (11) for online
function approximation has the following convergence guarantees:

lim
t→∞
‖pi(t)−Ĉi(P, t)‖= 0 ∀i, (15)

lim
t→∞
‖âi(t)− â j(t)‖= 0 ∀i, j, (16)

and lim
t→∞
‖âi(t)−a‖ ≤

∑
n
j=1 2‖Λ j(t)1/2‖

(
‖Λ j(t)−1/2β j(t)‖φεmax +‖Λ j(t)−1/2Λ0‖amax

)
mineig(∑n

j=1 Λ j(t))
∀i.

(17)

Proof. The proof has two parts. The first part is to show that all robots reach “cover”
mode and stay in “cover” mode. The second part uses a Lyapunov type proof tech-
nique similar to the one in [Schwager et al., 2009] to show that once all robots are
in “cover” mode, the convergence claims of (15), (16), and (17) follow.

Firstly, the “partition” mode simply implements a K-means clustering algorithm
[Duda et al., 2001], in which the basis function centers are the points to be clustered,
and the robots move to the cluster means. This algorithm is well-known to converge
in the sense that for any εpartition there exists a time T partition

i at which the distance
between the robot and the centers’ mean is less than εpartition, therefore all robots
will reach Mii = explore at some finite time. After this time, according to Algo-
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rithm 1, a robot will remain stopped until all of its mode estimates have switched
to “explore.” Suppose the first robot to achieve Mi = (explore, . . . ,explore) does
so at time Tf . This means that at some time in the past all the other robots, j,
have switched to M j j = explore and stopped moving, but none of them have
M j = (explore, . . . ,explore) (otherwise they would be the first). Therefore at Tf all
robots are stopped. Suppose the last robot to achieve Mi = (explore, . . . ,explore)
does so at Tl . From the properties of Algorithm 2 we know that Tl − Tf ≤ nT
(the maximum time between the first robot to obtain Mi = (explore, . . . ,explore)
and the last robot to do so is nT ). At time Tl , the first robot to have Mi =
(explore, . . . ,explore) will still be stopped, because it waits for nT seconds af-
ter achieving Mi = (explore, . . . ,explore), hence when any robot obtains Mi =
(explore, . . . ,explore), all other robots are stopped. Even though the robots may
compute their TSP tours at different times, they are all at the same positions when
they do so. Therefore, each basis function center is in at least one robot’s TSP tour.
Consequently, when all robots have completed their TSP tours, mineig

(
∑

n
i=1 Λi

)
will be similar in size to maxeig

(
∑

n
i=1 Λi

)
, making the bound in (17) small.

Each tour is finite length, so it will terminate in finite time, hence each robot will
eventually enter the “cover” mode. Furthermore, when some robots are in “cover”
mode, and some are still in “explore” mode, the robots in “cover” mode will remain
inside the environment Q. This is because Q is convex, and since Ĉi ∈ Vi ⊂ Q and
pi ∈ Q, by convexity, the segment connecting the two is in Q. Since the robots have
integrator dynamics (1), they will stay within the union of these segments over time,
pi(t) ∈ ∪τ>0(Ci(τ)− pi(τ)), and therefore remain in the environment Q. Thus at
some finite time, T cover, all robots reach “cover” mode and are at positions inside Q.

Now, define a Lyapunov-like function

V = H +
1
2 ∑

i
ãT

i Γ
−1ãi, (18)

which incorporates the sensing cost H , and is quadratic in the parameter errors ãi.
We will use Barbalat’s lemma to prove that V̇ → 0 and then show that the claims
of the theorem follow. Barbalat’s lemma requires that V is lower bounded, non-
increasing, and uniformly continuous. V is bounded below by zero since H is
a sum of integrals of strictly positive functions, and the quadratic parameter error
terms are each bounded below by zero.

Now we will show that V̇ ≤ 0. Taking the time derivative of V along the trajec-
tories of the system and simplifying with (3) gives

V̇ = ∑
i

(
−‖Ĉi− pi‖2kM̂i + ãT

i kFiâi + ãT
i Γ
−1 ˙̂ai

)
.

Substituting for ˙̂ai with (11) and (9) gives

V̇ =−∑
i

(
‖Ĉi− pi‖2kM̂i+γ ãT

i Bdz(Λiãi+λεi)+ζ ãT
i ∑

j∈Ni

li j(âi− â j)+ ãT
i Iproji

˙̂aprei

)
,
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where λεi :=
∫

s∈Ωi(t)K (s)φε(s)ds+Λ0a. Rearranging terms we get

V̇ =−∑
i

(
‖Ĉi− pi‖2kM̂i + γ ãT

i Bdz(Λiãi +λεi)+ ãT
i Iproji

˙̂aprei

)
−ζ

m

∑
j=1

α̂
T
j L(P)α̂ j,

(19)
where α̂ j := [â1 j · · · âm j]

T is the jth element in every robot’s parameter vector,
stacked into a vector, and L(P) ≥ 0 is the graph Laplacian for the Delaunay graph
which defines the robots communication network (please refer to the proof of The-
orem 2 in [Schwager et al., 2009] for details). The first term inside the first sum is
the square of a norm, and therefore is non-negative. The third term in the first sum
is non-negative by design (please see the proof of Theorem 1 from [Schwager et al.,
2009] for details). The second sum is nonnegative because L(P)≥ 0. Therefore, the
term with the dead-zone operator Bdz is the only term in question, and this distin-
guishes the Lyapunov construction here from the one in the proof of Theorem 1
in [Schwager et al., 2009].

We now show that the dead-zone term is also non-negative by design. Suppose
the condition C(Λiãi +λεi)< 0 from (12). Then Bdz(Λ ãi +λεi) = 0 and the term is
zero. Now suppose C(Λiãi +λεi)≥ 0. In that case we have

0≤ ‖Λ 1/2
i ‖

(
‖Λ−1/2

i (Λiãi +λεi)‖−‖Λ
−1/2
i βi‖φεmax −‖Λ

−1/2
i Λ0‖amax

)
,

which implies

0 ≤ ‖Λ−1/2
i (Λiãi +λεi)‖−‖Λ

−1/2
i βi‖φεmax −‖Λ

−1/2
i Λ0‖amax

≤ ‖Λ 1/2
i ãi +Λ

−1/2
λεi‖−

∥∥∥Λ
−1/2
i

(∫
Ωi(t)

K (s)φε(s)ds+Λ0a
)∥∥∥

≤ ‖Λ 1/2
i ãi +Λ

−1/2
i λεi‖

2− (Λ
−1/2
i λεi)

T(Λ
1/2
i ãi−Λ

−1/2
i λεi)

= (Λ
1/2
i ãi)

T(Λ
1/2
i ãi +Λ

−1/2
i λεi)

= ãT
i (Λiãi +λεi). (20)

Then from the definition of the dead-zone operator, Bdz(·), we have

ãTBdz(Λiãi +λεi) =
ãT(Λiãi +λεi)

‖Λiãi +λεi‖
C(Λiãi +λεi)≥ 0,

since the numerator was shown to be non-negative in (20), and C(·) is non-negative
by supposition. Therefore the dead-zone term is non-negative in this case as well.
We conclude therefore that V̇ ≤ 0.

The final condition to prove that V̇ → 0 is that V̇ must be uniformly continuous,
which is a technical condition that was shown in [Schwager et al., 2009], Lemmas
1 and 2. These lemmas also apply to our case, since our function V̇ is the same as
in that case except for the dead-zone term. Following the argument of those lem-
mas, the dead-zone term has a bounded derivative everywhere, except where it is
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non-differentiable, and these point of non-differentiability are isolated. Therefore, it
is Lipschitz continuous and hence uniformly continuous, and we conclude by Bar-
balat’s lemma that V̇ → 0.

Now we show that V̇ → 0 implies the convergence claims stated in the the-
orem. Firstly, since all the terms in (19) are non-negative, each one must sepa-
rately approach zero. The first term approaching zero gives the position conver-
gence (15), the last term approaching zero gives parameter consensus (16) (again,
see [Schwager et al., 2009] for more details on these). Finally, we verify the param-
eter error convergence (17). We know that the dead-zone term approaches zero,
therefore either limt→ ∞ ãT

i (Λt ãi + λεi) = 0, or limt→∞ C(Λiãi + λεi) ≤ 0. We al-
ready saw from (20) that ãT

i (Λt ãi + λεi) = 0 implies C(Λiãi + λεi) ≤ 0, thus we
only consider this later case. To condense notation at this point, we introduce di :=
‖Λ 1/2

i ‖
(
‖Λ−1/2

i βi‖φεmax −‖Λ
−1/2
i Λ0‖amax

)
. Then from limt→∞ C(Λiãi + λεi) ≤ 0

we have

0≥ lim
t→∞

(
‖Λ 1/2

i ‖‖Λ
−1/2
i (Λiãi +λεi)‖−di

)
≥ lim

t→∞

(
‖Λiãi +λεi‖−di

)
,

and because of parameter consensus (16), 0≥ limt→∞

(
‖Λ jãi +λε j‖−d j

)
for all j.

Then summing over j, we have

0 ≥ lim
t→∞

( n

∑
j=1
‖Λ jãi +λε j‖−

n

∑
j=1

d j

)
≥ lim

t→∞

(∥∥ n

∑
j=1

Λ jãi +
n

∑
j=1

λε j

∥∥− n

∑
j=1

d j

)
≥ lim

t→∞

(∣∣∣∥∥ n

∑
j=1

Λ jãi
∥∥−∥∥ n

∑
j=1

λε j

∥∥∣∣∣− n

∑
j=1

d j

)
.

The last condition has two possibilities; either limt→∞

(
‖∑

n
j=1 Λ jãi‖> ‖∑

n
j=1 λε j‖

)
,

in which case

0≥ lim
t→∞

(∥∥ n

∑
j=1

Λ jãi
∥∥−∥∥ n

∑
j=1

λεi

∥∥− n

∑
j=1

d j

)
≥ lim

t→∞

(∥∥ n

∑
j=1

Λ jãi
∥∥−2

n

∑
j=1

d j

)
, (21)

where the last inequality uses the fact that
∥∥∑

n
j=1 λεi

∥∥≤ ∑
n
j=1 d j. Otherwise,

limt→∞

(
‖∑

n
j=1 Λ jãi‖< ‖∑

n
j=1 λε j‖

)
, which implies limt→∞

(
‖∑

n
j=1 Λ jãi‖<∑

n
j=1 d j

)
which in turn implies (21), thus we only need to consider (21). This expression then
leads to 0≥ limt→∞

(
mineig

(
∑

n
j=1 Λ j

)
‖ãi‖−2∑

n
j=1 d j

)
, and dividing both sides by

mineig
(

∑
n
j=1 Λ j

)
(which is strictly positive since ∑

n
j=1 Λ j > 0), gives (17). ut

4 Simulation Results
The proposed algorithm is tested using the data collected from previous experi-
ments [Schwager et al., 2008] in which two incandescent office lights were placed
at the position (0,0) of the environment, and the robots used on-board light sensors
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to measure the light intensity. The data collected during these previous experiments
was used to generate a realistic weighting function which cannot be reconstructed
exactly by the chosen basis functions. In the simulation, there are 10 robots and the
basis functions are arranged on a 15×15 grid in the environment.

The proposed robust algorithm was compared against the standard algorithm
from [Schwager et al., 2009], which assumes that the weighting function can be
matched exactly. The true and optimally reconstructed (according to (5)) weighting
functions are shown in Figure 3(a) and (b), respectively. As shown in Figure 3(c)
and (d), with the robust and standard algorithm respectively, the proposed robust
algorithm significantly outperforms the standard algorithm and reconstructs the true
weighting function well. The robot trajectories for the robust and standard adaptive
coverage algorithm are shown in Figure 4(a) and (b), respectively. Since the standard
algorithm doesn’t include the exploration phase, the robots get stuck in a local area
around their starting position which causes the robots to be unsuccessful in learning
an acceptable model of the weighting function. In contrast, the robots with the ro-
bust algorithm explore the entire space and reconstruct the true weighting function
well.

True Weighting Function Optimally Reconstructed

Robust Algorithm Standard Algorithm

Fig. 3 A comparison of the weighting functions. (a) The true weighting function. (b) The optimally
reconstructed weighting function for the chosen basis functions. (c) The weighting function for the
proposed algorithm with deadzone and exploration. (d) The previously proposed algorithm without
deadzone or exploration.



Robust Adaptive Coverage for Robotic Sensor Networks 15
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Fig. 4 The vehicle trajectories for the different control strategies. The initial and final vehicle
position is marked by a circle and cross, respectively.

5 Conclusions
In this paper we formulated a distributed control and function approximation algo-
rithm for deploying a robotic sensor network to adaptively monitor an environment.
The robots robustly learn a weighting function over the environment representing
where sensing is most needed. The function learning is enabled by the robots ex-
ploring the environment in a systematic and distributed way, and is provably robust
to function approximation errors. After exploring the environment, the robots drive
to positions that locally minimize a cost function representing the sensing quality of
the network. The performance of the algorithm is proven in a theorem, and demon-
strated in a numerical simulation with an empirical weighting function derived from
light intensity measurements in a room. The authors are currently working toward
hardware experiments to prove the practicality of the algorithm.
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