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Abstract— Consider a set of fixed sensors used to estimate
the state of a vehicle (e.g. position, orientation and velocity)
while it attempts to follow a pre-planned trajectory. Since the
sensor can only provide a measurement to the vehicle when it is
within range, the deployment of the sensors will have a major
impact on the ability of the vehicle to follow the trajectory. The
problem addressed here is to optimally place the sensors in the
environment such that the weighted function of the estimation
error at each time-step is minimized. An optimization formulation
is proposed that accounts for the uncertainty of the vehicle’s
state in determining whether it can receive a measurement
from a sensor. A confidence level is introduced as a tuning
parameter that controls the conservativeness of the solution.
Consequently, the resulting solution increases the likelihood of
the vehicle successfully following its intended trajectory. Finally,
due to the interdependence between the sensors’ positions, a
novel incremental optimization algorithm is presented which
significantly outperforms a standard nonlinear optimization pro-
cedure. Experimental and simulation results are shown which
characterize the performance of the proposed algorithm.

I. INTRODUCTION

Effective sensor deployment has most notably been studied
with application to the Global Positioning System (GPS) [1].
In this system, the satellites effectively provide range mea-
surements to the end user which are used to triangulate
their position. The satellites’ configuration heavily impacts the
quality of the estimate of the user’s position and has been
extensively studied [2] [3].

Optimal sensor deployment strategies have also been studied
for improving robotic localization. For example, Jourdan et
al. [4] considered the case of deploying a network of static
sensors that provide range measurements to the agent for
localization. Most notably, they developed a locally optimal
algorithm, significantly outperformed Simulated Annealing, to
position the sensors on the boundaries of buildings to minimize
the average position error bound over multiple agent locations.
Zhang [5] examined the optimal orientation of sensors in 2D
where the sensors can have different but constant measurement
variances. A necessary condition was derived for the optimal
orientation through minimizing the joint covariance matrix.
This condition was then used to develop an M − 3 step
algorithm that converged to the globally optimal solution,
where M is the number of sensors. Zhang’s formulation,
however, does not consider the position of the sensors which
could have a major impact on the quality of the solution.

A related problem to optimal sensor deployment is the gen-
eration of trajectories for mobile sensor platforms to improve
target localization. In [6], the authors studied the case of
an unmanned aerial vehicle (UAV) taking 3D-bearings-only
measurements for the task of target localization. They setup
an optimization problem that optimized the trajectory of the

UAV to enhance the estimation performance characterized by
the Fisher Information Matrix (FIM). Similarly, Sinha et al. [7]
maximized the FIM as well as survivability and detection
probability for a group of UAVs performing surveillance of
several ground targets. Their solution technique used a gradient
descent algorithm coupled with a genetic algorithm to search
for the global minimum. Martinez et al. [8] investigated sensor
placement and motion coordination strategies through the
determinant of the FIM and characterized the global minima
in the 2D case. They used the results to develop a motion
coordination algorithm to dynamically control the mobile
sensor network to an optimal deployment around the target.

Finally, the idea of using sensor optimization for simul-
taneous localization and mapping (SLAM) has also been
considered. Strasdat et al. [9] explored the problem of SLAM
for computational and/or memory limited systems, which can
incorporate only a limited number of landmarks. Specifically,
they proposed a landmark selection policy that identifies which
landmarks are valuable for the robot to efficiently complete
its navigation tasks. Through simulations and experimental
demonstrations, they showed their algorithm outperformed
handcrafted heuristics.

The sensor deployment problem considered in this pa-
per is most similar to those considered in [4] and [5].
The problem involves a vehicle attempting to follow a pre-
planned trajectory through the environment. Although [4]
briefly touched on incorporating uncertainty, the proposed
work presents a unifying framework for handling uncertainty
of the vehicle’s execution of the pre-planned trajectory. To
increase the vehicle’s likelihood of successfully following the
trajectory and reaching its goal location, sensors are deployed
in the environment to provide the vehicle with measurements
when within range. A novel solution to this sensor deployment
problem is presented which is applicable to any linear system
with linear measurements.

There are many motivating examples for this work. One
example is the placement of sensors to minimize the uncer-
tainty of a vehicle following a pre-planned trajectory. There are
several applications for which a pre-planned trajectory exists
and is repeatedly used including automated supply chains,
autonomous construction and disaster site cleanup. In these ap-
plications, the proposed work can provide better performance
with fewer sensors than existing solutions. Another potential
application is tracking building occupants’ behavior for energy
efficient control.

Another class of motivating problems is that of landmark
placement in an environment, with the vehicle carrying a
sensor to observe the landmarks for localization. For example,
this work could be applied to feature selection for SLAM



with computationally limited systems in which the exponential
growth of requirements with number of landmarks is pro-
hibitive. This problem is formulated in [9]. If the environment
is dense in features, then the proposed algorithm could be ap-
plied without much change. With a small number of features,
however, the expected distance to future landmarks plays a
critical role and would need to be factored into the algorithm.

The work presented has several contributions. First, the
sensor placement problem is formulated as an optimization
program which minimizes the estimation error while the
vehicle follows the pre-planned trajectory; this will maximize
the likelihood of the vehicle successfully reaching its intended
destination. In the original problem formulation, the discrete
nature of the measurement region results in insufficient gradi-
ent information. Consequently, a continuous approximation is
used that is more suitable for a numerical optimization solver.
To ensure that the final solution is conservative, the uncertainty
of the vehicle is taken into account when determining whether
the vehicle can receive a measurement from the sensor. In this
design, a confidence level is introduced as a tuning parameter
that controls the degree of conservativeness of the resulting
sensor deployment. Finally, an incremental optimization proce-
dure is proposed that significantly outperforms both a simple,
large nonlinear optimizer and Simulated Annealing.

The paper proceeds as follows. Section II describes the
standard sensor placement problem formulation. In Section III,
a continuous approximation of the measurement regions is
presented. A solution that accounts for the uncertainty of
the vehicle around the pre-planned trajectory is developed in
Section IV. Simulation and experimental results are presented
in Sections V and VI, respectively. The paper concludes with
directions of future work and with an Appendix that analyzes
the optimal measurement time for a simple system.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

x (k + 1) = Ax (k) +Bu (k) + w (k) , ∀k ∈ TN (1)

where x (k) ∈ Rn is the state of the system, u (k) ∈ Rp is
the input of the system, w (k) ∈ Rn is the process noise and
TN = {0, . . . , N − 1} is the horizon. The initial state, x(0),
is assumed to have a zero mean Gaussian distribution with
covariance Σ0 i.e., x(0) ∼ N (0,Σ0), and the process noise,
w(k), is assumed to have a zero mean Gaussian distribution,
w (k) ∼ N (0,Σw).

The system may estimate its own state using M sensors
that can be placed in the environment. Let M be defined as
{1, . . . ,M}. Each sensor, i ∈M, has position si ∈ Rd, sensor
measurements Ci ∈ Rr×n and a maximum sensing radius
Ri ∈ R. The ith sensor’s measurement is defined by yi (k) =
Cix (k) + vi (k), where yi(k) ∈ Rr and vi(k) ∈ Rr are the
measurement output and measurement noise of the ith sensor
at time-step k, respectively. The measurement noise has a zero
mean Gaussian distribution, vi (k) ∼ N (0,Σvi) , ∀i ∈M.

By a standard result of linear estimation theory, the Kalman
filter is the minimum mean square error estimator for the

system considered. Let Σ̂k|k be the covariance matrix of the
optimal estimate of x(k) given all of the measurements up
to time-step k, let Σ̂k+1|k be the covariance matrix of the
predicted state, x(k+ 1), given all of the measurements up to
time-step k, and let Ω̂k|k = Σ̂−1k|k be the information form of
the standard Kalman filter. The information filter form has an
important advantage over the standard Kalman filter recursion
in that the measurement update is a simple sum over all the
measurements, but this advantage could be negated by the
increased computational cost in the motion update for large
dimensional systems. The information form of the estimator
recursion is as follows,

Ω̂k+1|k = (AΩ−1k|kA
T + Σw)−1 (2)

Ω̂k+1|k+1 = Ω̂k+1|k +
m∑
j=1

fw

(
x(k + 1), sj , Rj , Ω̂k+1|k

)
CTj Σ−1vj Cj

(3)
with initial condition Ω̂0|0 = Σ−10 . The weighting function,
fw(·), indicates whether a sensor can provide a measurement
or not. The general sensor placement problem is now stated.

minimize V (s) =
∑N
k=1 tr

(
Ω̂−1k|k

)
subject to

Eqn. (2) ∀k ∈ TN
Eqn. (3) ∀k ∈ TN

(P2.1)

There are several choices for the objective function, V (s).
Since the problem involves minimizing a matrix, it is desirable
to find a scalar function for the objective to simplify the
problem without significant loss of information. Three possible
functions are the determinant, the maximum eigenvalue, or the
trace. The main disadvantage of the determinant is that a small
determinant can correspond to a very elongated ellipse. As
opposed to the maximum of the eigenvalues, the trace repre-
sents the uncertainty in all directions equally and was chosen.
To ensure a fair comparison between different algorithms, the
summation over all time-steps is used since it balances the
uncertainty of the vehicle throughout the trajectory.

The optimization problem P2.1 only has an analytical so-
lution for very simple systems, such as the one presented in
the Appendix; consequently a numerical optimization solver
must be used. To aid the numerical solver in finding a locally
optimal solution, the analytical gradient can be computed for
this problem as stated in Algorithm 1, where J(j) is the
gradient of the j-th component of the concatenated sensor
positions. A similar procedure can be used to calculate the
analytical Hessian. Algorithm 1 is presented in a form that is
easy to read but not necessarily the most efficient.

For the remainder of the paper, the problem is specialized
for the case of a vehicle with state representing position,
velocity, etc. Let p(k) ∈ Rd ⊂ x(k) be the position of
the vehicle at the kth time-step. The true sensor measurement



Algorithm 1 Computation of the Gradient
1: for j = 1, . . ., m do

2: J(j) = 0, Ω̂0|0 = Ω0,
∂Ω̂−10|0

∂sj
= 0

3: for k = 1, . . ., N do
4: Ω̄k|k−1 = AΩ̂−1k−1|k−1A

T + Σw

5:
Ω̂k|k = Ω̄−1k|k−1+∑m

i=1 fw(x(k), si, Ri, Ω̂k|k−1)CTi Σ−1vi Ci

6:
∂Ω̄k|k−1

∂sj
= A

∂Ω̂−1k−1|k−1

∂sj
AT

7:

∂Ω̂k|k

∂sj
= −Ω̄−1k|k−1

∂Ω̄k|k−1

∂sj
Ω̄−1k|k−1+

∂fw(x(k), sj , Rj , Ω̂k|k−1)

∂sj
CTj Σ−1vj Cj

8:
∂Ω̂−1k|k

∂sj
= −Ω̂−1k|k

∂Ω̂k|k

∂sj
Ω̂−1k|k

9: J(j) = J(j) + tr

(
∂Ω̂−1k|k

∂sj

)
10: end for
11: end for

weighting function in Eqn. (3) is defined as,

fw(x, s,R, Ω̂) =

{
1, if ‖p− s‖ ≤ R
0, otherwise. (4)

There are two concerns with this formulation. First, the
weighting function defined in Eqn. (4) produces an ill-formed
optimization problem for numerical solvers because the gra-
dient is 0 everywhere except when ‖p − s‖ = R, where it is
undefined. Consequently, an approximate weighting function
will have to be devised to provide more information to the
numerical optimization solver. Second, only the pre-planned
trajectory, xplan, is known a-priori and the vehicle may stray
away from it if the vehicle’s process noise is large. Thus the
vehicle’s position, p, in the true sensor measurement weighting
function cannot be readily evaluated.

III. APPROXIMATING THE WEIGHTING FUNCTION

To address the lack of gradient information in the true sensor
weighting function, the function has been approximated by,

fw(x, s,R, Ω̂) ≈ gw(d) = 1− 1

1 + exp(−(αd+ β))
(5)

where d = ‖p− s‖ is the distance between the sensor and the
vehicle. The function is a transformed sigmoid decay function
with two parameters that control the shape. The parameter α
affects how quickly the function decays to zero beyond the
maximum sensing radius R and is calculated through defining
the value of the function at the maximum sensing radius. The
parameter β controls the width of the shoulder. As β increases,
the weighting function approaches the true sensing region.
Figure 1 illustrates the weighting function for a maximum
sensing radius of R = 2 meters, for an α parameter defined

by gw(2) = 0.01, and for values of β = [5, 10, 15, 20, 25, 30].
The weighting function is approximately 0 when the vehicle is
outside the maximum sensing region and less than 1 when the
vehicle is inside the sensing region. Therefore, this form of
the weighting function is a conservative approximation of the
true sensor weighting function which is a necessary condition
to obtain a realistic solution. Since the function is continuous
and smooth everywhere, it has a well defined derivative which
is a major benefit for the numerical optimization solver.
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Fig. 1. The weighting function, gw(d), for various values of the parameter β
with a maximum sensing radius of 2 meters and α is defined as gw(2) = 0.01.
As β increases, the weighting function approaches the true weighting function.

IV. ACCOUNTING FOR UNCERTAINTY

For certain systems with large process noise, the pre-
planned trajectory is not a good estimate of the vehicle’s path
if the system is not provided with enough measurements to
accurately estimate its state. Consequently, Eqn. (5) cannot
be used in its current form. Rather, the uncertainty in the
vehicle’s position, p, at each time-step will need to be taken
into account. For the system considered, the estimate of the
position of the vehicle at each time-step has a Gaussian dis-
tribution. Unfortunately the Gaussian distribution has infinite
support, but luckily most of the probability distribution is
centered closely around the mean. Therefore, only a region
in the neighborhood of the pre-planned positions will have
to be considered for conservatively estimating whether the
vehicle will receive a measurement from a sensor. This region
is represented by the ellipsoid Eρ. Consequently, d in Eqn. (5)
can be replaced with Θ(p, s, Eρ) = max

o∈Eρ
‖o − s‖, which is

defined as the maximum distance from the sensor position, s,
to any point contained within the ellipsoid, Eρ.

For a multivariate Gaussian random variable there is a
natural choice for the ellipsoid that represents the uncertainty
in the vehicle’s position. Consider the d-D position of the
vehicle, p ∼ N (µ,Σ), where p ∈ Rd. A confidence level,
δ, can be specified that results in a corresponding confidence
ellipsoid, Eρ, such that, p (p ∈ Eρ) = δ. Given this definition,
there are an infinite number of choices for the ellipsoid, but it
will be restricted to be centered around the mean µ.

Define the random variable, z ∈ R such that
z = (p− µ)TΣ−1(p− µ), which is a measure of the distance
of p from µ. It is well known that z has a Chi-square distribu-
tion, X 2

d . The confidence ellipsoid, parameterized by ρ, is then
defined as, Eρ =

{
p ∈ Rd|z ≤ ρ

}
. Once the confidence level,

δ, is specified, the confidence ellipsoid parameter is calculated
via ρ = F−1X 2

d
(δ) where FX 2

d
is the chi-square cumulative



distribution function. In this formulation, the confidence level
is a tuning parameter that controls the conservativeness of the
solution.

A. Example Objective Function

Several important properties of the objective function can
now be demonstrated through a simple example. Consider the
double integrator system with 1D position defined by,

A=

[
1 ∆t
0 1

]
, B=

[
0.5∆t2

∆t

]
, Σw=1× 10−4I,

Ci=
[

1 0
]
, Σvi =0.5, Ri=0.5,∀i∈{1, 2}

where ∆t = 0.25 seconds, N = 200, δ = 0.95 and the
pre-planned trajectory has equally spaced points between 0
and 10 meters. The logarithm of the objective function for
this scenario is depicted in Figure 2, where s1 and s2 are
the positions of the sensors. Note that the objective function
is symmetric about the line s1 = s2 since the sensors are
identical. The optimal sensor positions for the two sensors are
s1 = 1.41 and s2 = 4.54 meters with an objective function
value of 98.1.

Since the uncertainty of the vehicle position is included
in determining when a measurement is allowed, the sensor
positions are not very robust to positive perturbations to their
positions. This is due to the fact that the process noise always
increases the uncertainty of the vehicle. Consequently, if the
sensor is pushed too far along the trajectory the vehicle’s
confidence ellipsoid will never be contained within the sensor
footprint. This trend can be clearly seen in Figure 2 by the
darker region located in the upper-right of the plot. If both
sensors are perturbed by 0.05 meters into this region, the value
of the objective function explodes to 2479 which is an increase
of over 25 times. In contrast, if both sensors are perturbed
by −0.1 the objective function value is 104.2 which is only
a 1.06% increase. Therefore, one should be conservative in
positioning the sensors since a small perturbation might result
in a large detriment to the final solution.

This examples also illustrates that sensors closer to the start
of the trajectory have a larger impact on the objective function.
For example, if sensor s1 is perturbed by +0.05 meters, then
the objective function increases to 2479. However, if only
sensor s2 is perturbed by +0.05 meters, then the objective
function only increases to 470. The reason behind this trend
is due to the fact that if the first sensor is not allowed to
perform any measurements then the subsequent sensors will
be significantly less likely to provide a measurement. This
property is dramatic for this example due to the small number
of sensors. Small perturbations will have less of an impact if
there are a large number of sensors over a short trajectory,
since the interdependence is smaller.

B. Solution Methodology

The presented algorithm assumes the sensors are homoge-
neous to eliminate the impact on the solution due to the order-
ing of the sensors. Solving the optimization problem in P2.1 is
difficult for two reasons. First, as stated in the previous section,
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Fig. 2. The logarithm of the objective function for two identical sensors
with the uncertainty of the position of the vehicle taken into account. The
colormap ranges from light to dark for small to large values of the objective
function. The optimal sensor positions are marked with an x. Note that since
the sensors are identical the function is symmetric about the line s1 = s2.

the sensors’ positions are highly dependent on each other and
during the optimization procedure their position updates may
have to be coordinated. Determining this level of coordination
or interdependence strictly from the gradient information is
difficult, if not infeasible, thus an intelligent algorithm must
be designed. Second, the optimization program P2.1 is not
convex; consequently, finding the globally optimal solution
is difficult and the final solution is sensitive to the initial
conditions since the optimizer will tend to find local minimas.

Due to the interdependence of the sensors, an incremental
sensor placement algorithm is proposed; each additional sensor
is placed in the environment while the previously placed
sensors’ positions are fixed. The motivation behind this type
of algorithm lies within the observation in Section IV-A that
sensors further along the trajectory are heavily dependent on
the previous sensors’ positions. For example, consider the
objective function shown in Figure 2. If sensor s1 is initially
placed at 1 meter then the furthest that sensor s2 can be placed
is 4.1 meters. However, if s1 is slightly perturbed to 1.1 meters
then s2 can be placed at 4.2 meters.
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Fig. 3. This figure illustrates the objective function for the incremental
addition of another sensor after two sensors have already been placed in the
environment. The colormap ranges from light to dark for small to large values
of the objective function. The pre-planned trajectory is shown as the dash-
dotted line and the previous two sensor locations are indicated by the dots.
There are two local minima for the additional sensor shown by the black x’s.

While the incremental algorithm significantly reduces the
the complexity of the optimization algorithm, the objective
function is still plagued by many local minima. Consequently,
a poor choice in the initial condition of the sensor position can
lead to a poor solution. Unfortunately, there is no clear simple
choice in choosing the initial condition for the optimization
solver. Consider the objective function that is depicted in
Figure 3 corresponding to the value of placing an additional



sensor after two sensors have already been deployed in the
environment. There are two local minima, highlighted by
the x’s, with objective value of 16.3 and 27.1 corresponding
to a 66.7% difference. Since local minima are difficult for
an optimizer to circumvent, the initial condition for each
incremental sensor addition will be instrumental to the quality
of the overall solution. In general, random sampling of the
initial sensor position helps to prevent getting stuck in local
minima but the state space to sample from could be quite large.
Fortunately, the best sensor positions are typically located
near the pre-planned trajectory as seen in Figure 3. Thus, the
sampling space can be effectively limited to points along the
pre-planned trajectory.

The overall algorithm is stated in Algorithm 2. The first
step in the algorithm is to sample q positions from the pre-
planned trajectory into Ssample. Then for each additional sensor,
up to M sensors, the position from Ssample which minimizes
the cost function V ({s, sfixed}) is chosen. This position is then
optimized through gradient descent while keeping all of the
previous sensor positions fixed. This procedure is repeated
until all of the sensors are placed. Since the incremental
placement of sensors does not guarantee a locally optimal
solution, a final optimization procedure is performed.

Algorithm 2 Solution Method
1: Ssample = sample q positions from xplan
2: for i = 1, . . ., M do
3: si = arg min

s∈Ssample

V ({s, sfixed})

4: Optimize si through gradient descent
5: sfixed = {sfixed, si}
6: end for
7: Optimize sfixed through gradient descent

V. SIMULATION RESULTS

Several simulation studies were performed to evaluate the
performance of the presented sensor placement algorithm.

A. Scenarios

The following examples have double integrator dynamics
for a 2D vehicle position with,

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


0.5∆t2 0
0 0.5∆t2

∆t 0
0 ∆t

 .
(6)

where ∆t = 0.25 seconds. For all of the examples, the chosen
parameters for the weighting function are gw(R) = 0.01 and
β = 50. In all the figures, the sensors are shown as numbered
circles and the pre-planned trajectory is shown as the solid
blue line with a subset of the uncertainty ellipsoids.

1) Position Sensing: The scenarios depicted in this section
use position sensors with dynamics,

Ci =

[
1 0 0 0
0 1 0 0

]
, Σvi = 0.1I

and a confidence level of δ = 0.85. First, simple cases are
considered with only a few sensors to aid understanding of
the algorithm’s choices. Figures 4 and 5 show the solution
after the incremental sensor placement on the left and the final
solution on the right.

Figure 4 shows an example with five sensors with a radius
of sensing of 2 meters and process noise Σw = 0.001I . In
this scenario, the final optimization results in moving sensor
1 further along the trajectory because sensor 2 was placed in
the center. The objective value after the incremental placement
step is 52.6 as compared to 36.9 after the final optimization.

For the scenario displayed in Figure 5, there are four
sensors with a radius of sensing of 2 meters and process noise
Σw = 0.0001I . After the final optimization, sensor 3 and 4 are
pushed further back toward the start of the trajectory. Sensor
4 is positioned to sense more positions along the final bend of
the pre-planned trajectory. In addition, sensor 1 is moved up to
sense all of the positions in the first bend of the trajectory. The
objective value after the incremental sensor placement step is
63.7 and after the final optimization it is 40.2.
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Fig. 4. The pre-planned trajectory is shown as the blue line, the uncertainty
ellipsoids for a subset of the vehicle’s pre-planned positions are shown as the
blue ellipsoids and the sensor footprints are the numbered circles. (a) The
solution after incrementally placing all of the sensors. (b) The solution after
the last optimization step is performed. The main difference is that sensor 1
is allowed to move to the right since sensor 2 was placed in the center. The
objective values for the two solutions are 52.6 and 36.9, respectively.
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Fig. 5. (a) The solution after incrementally placing all of the sensors (b)
The solution after the last optimization step is performed. The main difference
between the two solutions is that sensor 3 and 4 are moved further back along
the trajectory. The objective values for the two solutions are 63.7 and 40.2,
respectively.

Figure 6 shows an example for a larger sized problem
with 16 sensors and an extremely overlapping trajectory. The
sensors have a radius of sensing of Ri = 3 meters. The process
noise of the vehicle was set to Σw = 0.01I . In retrospect, the
algorithm makes some fairly intelligent choices on where to
place the sensors. In particular, sensors 2, 3, 6, 10, 11 and 15
all take measurements at multiple parts of the trajectory. Also,



sensors 5, 9 and 12 perform measurements for the entire time
the vehicle is performing its loop.

-15 -10 -5 0 5 10

-10

-5

0

5

10

1

2

3

4
5

6

7

8

9

10

11
13

14

15

16

12

Fig. 6. The sensor placement solution for a sinuous trajectory for sixteen
sensors with sensor range of 3 meters.
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Fig. 7. The sensor placement solution for five velocity sensors.

2) Velocity Sensors: The last example shown in Figure 7
is for a system with velocity sensors with the same dynamics
as the previous examples except,

Σw = 0.0001I, Ci =

[
0 0 1 0
0 0 0 1

]
,

Σvi = 0.001I, Ri = 2, ∀i ∈ {1, . . . , 5}

and a confidence level of δ = 0.95. The sensor placements are
similar to the previous example with position sensors but more
sensors are required since the velocity sensors don’t provide
as much information.

B. Performance Analysis

To characterize the performance of the algorithm, the pre-
sented solution is compared with a nominal strategy which
does not account for the position uncertainty. Three pre-
planned trajectories were selected and the vehicle was sim-
ulated 500 times for each strategy. The first two use position
sensors and the last one uses velocity sensors. Both sensor
placement solutions for each trajectory are shown in Figure 8.
The solution when accounting for the uncertainty of the
vehicle is shown as the orange, solid circles with an x at
the center and the solution without is displayed as the green,
dashed circles with a dot at the center. The solution when not
accounting for uncertainty was obtained through a gradient
descent optimization algorithm because the interdependence
of the sensors is drastically reduced in this formulation. In all
cases, the vehicle starts at (0, 0).

In all scenarios, the two different solutions are fairly similar
at the beginning of the trajectory but differ drastically at the
end of the trajectory. This difference arises primarily because

the solution when planning with uncertainty has to shift the
sensors closer to the beginning of the trajectory to account for
the increasing uncertainty.
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Fig. 8. Compares the sensor placement for three different scenarios with
and without accounting for the uncertainty of the vehicle. The uncertainty
included solution is depicted as the orange, solid circles with an x at the
center and the solution not accounting for uncertainty is shown as the green,
dashed circles with a dot at the center. For all scenarios, the major difference
between the two solutions is the placement of the last sensors. (a) [Line] For
a system with parameters: Σw = 0.0005I , Ri = 1 meter and Σvi = 0.05I .
(b) [Sinuous] The system parameters are: Σw = 0.001I , Ri = 2 meters and
Σvi = 0.1I . (c) [Vel. Sensors] The same parameters as previously used.

The performance results for the simulations are shown in
Table I which presents several statistics for the positioning
error at the final location. The statistics presented in the table
are: the mean of the position error at the final time-step for all
trajectories that didn’t diverge, the maximum final positioning
error and the percent of the trajectories that diverged. A
divergent trajectory is classified as one in which the final
position of the vehicle is outside of the uncertainty ellipsoid
around the pre-planned trajectory. The uncertainty ellipsoid is
calculated from the plan that accounts for the uncertainty of
the vehicle since this is the most conservative prediction of
the final position of the vehicle.

TABLE I
COMPARISON OF THE STATISTICS OF THE PERFORMANCE OF THE TWO

DIFFERENT SOLUTIONS.

With Uncertainty Without Uncertainty
mean max % div. mean max % div.

Line 0.95 2.73 0.0 0.27 25.10 6.8
Sinuous 0.70 2.19 0.2 0.37 22.92 3.4

Vel. Sensors 0.52 1.73 0.0 0.41 3.59 0.2

For all three scenarios, the mean performance of the vehicle
is better when planning without uncertainty, but the max error
and the percent diverged are significantly larger. The improved
mean error performance when planning without uncertainty
is expected since in this strategy, sensors can be placed
further along the trajectory without penalty, thus reducing
the final error for non-divergent trajectories. However, by not
accounting for the uncertainty, the strategy is much more likely



to result in divergent trajectories. It is also interesting to note
that for the velocity sensors scenario, the performance statistics
are very similar for both planning strategies. This is due to the
fact that velocity sensors accumulate a large amount of drift in
the position estimate of the vehicle. Thus, there is less benefit
in incorporating the uncertainty in the planning stage.

C. Comparison to Simulated Annealing

For comparison, the proposed algorithm was evaluated
against Simulated Annealing (SA). Since SA is a stochastic
algorithm it has the potential to avoid local minima and ap-
proach the globally optimal solution. The proposed algorithm
and SA were evaluated on three different scenarios. Figure 9
shows a histogram of the relative difference, VSA−V

V , for 50
trials of each scenario.

In the first scenario, the pre-planned trajectory is a simple
45 ◦ line and there are 3 sensors with a sensing radius of 6 me-
ters. Figure 9(a) shows a histogram of the relative performance
between the proposed algorithm and SA. Even for this simple
scenario, SA has difficultly consistently finding a reasonable
solution. In 28% of the trials SA had an objective value larger
than 50 times the proposed solution. In the next scenario, SA
was run for the example shown in Figure 4 and the histogram
of the relative performance is shown in Figure 9(b). For the
final scenario, both algorithms were evaluated on the sinuous
trajectory displayed in Figure 5 and the results are shown
in Figure 9(c). In this example, SA was able to find a 20%
better solution than the proposed algorithm 30% of the time,
but 70% of the solutions were over 6 times worse than the
proposed algorithm. Consequently, even though SA sometimes
can find a better solution, the proposed algorithm consistently
finds reasonable solutions. In addition, SA ran slower than the
proposed algorithm by a factor of 22, 16 and 13.
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Fig. 9. Comparison of the relative performance between the proposed
algorithm and Simulated Annealing for three different examples. A positive
number means that Simulated Annealing found a worse solution than the
proposed algorithm.

VI. EXPERIMENTAL RESULTS

The sensor placement strategies were also evaluated on
a quadrotor unmanned aerial vehicle. The vehicle has an
onboard inertial measurement unit which provides three-axis
attitude, attitude rate and acceleration measurements. An ex-
ternal Vicon [10] positioning system is also used to provide
measurements of the vehicle’s position with respect to a global
coordinate frame.

With any aerial vehicle, the state (position, orientation and
velocity) estimation is critical to a successful flight since small
errors can easily lead to a disastrous crash. With this in mind,
instead of withholding Vicon measurements when the vehicle

is outside of the sensing regions, the vehicle was provided with
degraded measurements to prevent any major catastrophes.

In the following experiments, the sensor placement strate-
gies were evaluated on the estimation of the quadrotor’s
motion in the 2D x-y plane. For low speeds, the quadrotor’s
planar translational dynamics can be approximated by standard
linear point mass dynamics as shown in Eqn. (1), (6). To
follow the pre-planned trajectory, a controller with both feed-
forward and feedback terms was utilized. The parameters
used for the experimental tests were: ∆t = 0.05 seconds,
Σw = 0.00001I , Σvi = 0.001I and Ri = 0.25 meters.

The results of the experimental trials are depicted in Fig-
ure 10, with the planning with and without uncertainty cases
shown on the left and right, respectively. The pre-planned
trajectory is shown by the blue, dash-dotted line; the trajectory
starts at (−1, 0) meters and ends at (−0.25, 0) meters and
requires the vehicle to stop at each corner. Ten experimental
trials were conducted for each sensor placement strategy.
When accounting for uncertainty, nine out of the ten tests
were successfully flown by the quadrotor vehicle. The test that
failed required human intervention because the vehicle initially
missed the second sensor’s measurement region, causing the
vehicle to oscillate around the trajectory. In contrast, the sensor
placement strategy that didn’t account for the uncertainty of
the vehicle required human intervention for all ten trials to
prevent a crash. The main cause of the drastic performance
differences between the two plans is the placement of the
first sensor. In particular, the solution without accounting for
uncertainty does not place a sensor at the starting position,
causing the vehicle to consistently overshoot the pre-planned
trajectory at the first corner and subsequently oscillate out of
control.
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Fig. 10. Experimental data comparison for two different sensor placement
strategies. The solid lines are the vehicle’s trajectory in the 2D plane, the dash-
dotted line is the pre-planned trajectory, the colored circles are the sensor
footprints and the green dot is the final goal location. The experimental
trials for planning with and without uncertainty are shown in (a) and (b),
respectively. (a) Successfully completes nine out of ten trials. (b) Pilot
intervention is required for all ten trials to prevent a crash.

VII. CONCLUSIONS

A generalized solution to the sensor deployment problem for
a linear system with linear measurements was presented. To
ensure the conservativeness of the solution, the uncertainty of
the vehicle’s position was accounted for when determining if
the vehicle will receive a measurement. Finally, the sensor de-
ployment strategy was demonstrated on a quadrotor platform,



where the proposed algorithm showed significant performance
increases over other strategies.

There are several interesting areas of future work that
the authors wish to explore. First, the case of non-radial
sensing regions due to obstacle occlusions should be explored
which will increase the applicability of the algorithm. Another
extension to the algorithm is to incorporate nonlinear system
dynamics as well as nonlinear sensor measurements. Lastly,
the authors wish to extend the algorithm to handle heteroge-
neous sensors; this presents a challenging addition since the
ordering of the sensors heavily impacts the final solution.
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APPENDIX
ANALYTICAL SOLUTION

For simple systems, an analytical solution to the optimiza-
tion problem in P2.1 can be found. Consider a 1D system that
has dynamics,

xk+1 = xk + ∆tuk + wk. (7)

where xk ∈ R, wk ∼ N (0, σw) and k ∈ {1, . . . , N} .
In the current scenario, the system can only take a single
measurement, ys = xs + v with v ∼ N (0, σv), at
time-step, s. The optimal measurement time can be solved for
by differentiating the objective function and setting it equal to
0 which results in:

s∗ =

{
− σ0
σw

,
1

σw

(
−3

4
(σ0 + σv) +

1

4
(N + 1)σw±

1

4

√
(σ0 + 9σv + (N + 1)σw) (σ0 + σv + (N + 1)σw)

)}
.

(8)
It is important to note that there is no guarantee that the value
for s∗ will be an integer. An integer solution, s̄∗, can be
determined by rounding s∗. The performance of this rounded
solution is upper bounded away from the optimal solution by
V (s̄∗)−V (s∗). Also, the optimal solution is not guaranteed to
return a solution in the range {1, . . . , N}, but these cases can
still provide valuable insight into the optimal sensing time.

PERTURBATION ANALYSIS

An interesting analysis to perform on the optimal sensing
time is how the solution varies due to perturbations in the
system parameters.

Time Horizon N :

One parameter of interest is the time horizon. The derivative
of the optimal sensing time with respect to the time horizon
is,

∂s∗

∂N
=

1 + 5σv + σ0 + (N + 1)σw

4
√

(9σv + σ0 + (N + 1)σw)(σv + σ0 + (N + 1)σw)
.

(9)
The steady state change as N approaches ∞ is
limN→∞

∂s∗

∂N = 1
2 . Consequently, as N increases the

optimal sensing time’s dependence on the parameters of the
system decreases; therefore, if the time horizon is increased
by one time-step, the optimal sensing time will only change
by 0.5.

Process Noise σw:

Characteristics of the optimal sensor measurement time with
respect to changes in the process noise can also be determined
analytically. Some of the important results from this analysis
are as follows. As the process noise, σw, approaches 0 is
limσw→0+ s

∗ = −∞, which is ill-formed because the sensing
time is restricted to s ∈ {1, . . . , N}, but a trend can still be
extracted from the result. As the process noise decreases, the
optimal sensing time also decreases toward the first possible
measurement time. As σw approaches ∞ is limσw→∞ s∗ =
1
2 (N + 1). Consequently, as the process noise grows toward
infinity the optimal sensing time isn’t dependent on any of
the system parameters and approaches the middle of the time
horizon.

Measurement noise σv:

The properties of the optimal sensing time can also be
analyzed with respect to the measurement noise. As the
measurement noise, σv , tends to 0,

lim
σv→0+

s∗ =
(N + 1)σw − 2σ0

2σw
≤ 1

2
(N + 1) (10)

which is bounded to the first half of the time horizon. As σv
approaches ∞,

lim
σv→∞

s∗ =
2(N + 1)σw − σ0

3σw
≤ 2

3
(N + 1) (11)

which is dependent on the other system parameters but can be
bounded to the first two-thirds of the time horizon.
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